Leading-edge droop flap

Last updated
Airbus A380 approaching to land, with deployed droops visible between the fuselage and the inner engines A380 F-WWEA LEGT.jpg
Airbus A380 approaching to land, with deployed droops visible between the fuselage and the inner engines

The leading-edge droop flap is a device on the leading edge of aircraft wings designed to improve airflow at high angles of attack. The droop flap is similar to the leading-edge slat and the Krueger flap, but with the difference that the entire leading edge section rotates downwards, whereas the slat and Krueger flap are panels which move away from the wing leading edge when it is deployed. [1]

Contents

Location

A leading-edge droop flap comprises the rounded front part of a wing, in movable form. The Airbus A380 has droop flaps between the fuselage and each inboard engine, at the leading edge of the thickest part of each wing. [1] [2] Early variants of the Hawker Siddeley Trident had two droop flaps on the outboard of each wing and a Krueger flap on the section closest to the fuselage. [3]

Use and effect

Droop flaps function with other high-lift devices on an aircraft to increase the camber of the wing and reduce the stalling speed. On the Airbus A380, the first stage of lift device selection deploys the droop flaps (called droop noses by Airbus) and leading-edge slats located further out on the wing; with the main flaps starting to extend when the second stage is selected. The variable sections on the A380 may be drooped to a position 22 or 25 degrees lower than their stowed position. [2] Another function of droop flaps on the A380 is to change the stall characteristics of the wing. [4] The A380's designers found that the airflow between the engines was separating from the wing surface prior to the airflow between the engine and the fuselage, an undesirable characteristic. Adding droop between the engine and the fuselage fixed the problem; whereas using a leading-edge slat would not have done so because of the gap (or slot) created between a slat and the wing when a slat is deployed. [4]

Aircraft with droop flaps

See also

Related Research Articles

<span class="mw-page-title-main">Airbus A300</span> Worlds first twin-engine widebody jet airliner

The Airbus A300 is Airbus's first production aircraft and the world's first twin-engine, double-aisle wide-body airliner, developed and manufactured by Airbus from 1971 to 2007.

<span class="mw-page-title-main">Wing</span> Appendage used for flight

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Tailplane</span> Small lifting surface of a fixed-wing aircraft

A tailplane, also known as a horizontal stabilizer, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabilizer, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.

<span class="mw-page-title-main">Stall (fluid dynamics)</span> Abrupt reduction in lift due to flow separation

In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.

<span class="mw-page-title-main">Leading-edge extension</span> Anti-stall control surface on aircraft

A leading-edge extension (LEX) is a small extension to an aircraft wing surface, forward of the leading edge. The primary reason for adding an extension is to improve the airflow at high angles of attack and low airspeeds, to improve handling and delay the stall. A dog tooth can also improve airflow and reduce drag at higher speeds.

<span class="mw-page-title-main">Vortex generator</span> Aerodynamic device

A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface or a rotor blade of a wind turbine. VGs may also be attached to some part of an aerodynamic vehicle such as an aircraft fuselage or a car. When the airfoil or the body is in motion relative to the air, the VG creates a vortex, which, by removing some part of the slow-moving boundary layer in contact with the airfoil surface, delays local flow separation and aerodynamic stalling, thereby improving the effectiveness of wings and control surfaces, such as flaps, elevators, ailerons, and rudders.

<span class="mw-page-title-main">Jet airliner</span> Passenger aircraft powered by jet engines

A jet airliner or jetliner is an airliner powered by jet engines. Airliners usually have two or four jet engines; three-engined designs were popular in the 1970s but are less common today. Airliners are commonly classified as either the large wide-body aircraft, medium narrow-body aircraft and smaller regional jet.

<span class="mw-page-title-main">Lockheed L-2000</span> Proposed US supersonic airliner design

The Lockheed L-2000 was Lockheed Corporation's entry in a government-funded competition to build the United States' first supersonic airliner in the 1960s. The L-2000 lost the contract to the Boeing 2707, but that competing design was ultimately canceled for political, environmental and economic reasons.

<span class="mw-page-title-main">T-tail</span> Aircraft empennage configuration

A T-tail is an empennage configuration in which the tailplane is mounted to the top of the fin. The arrangement looks like the capital letter T, hence the name. The T-tail differs from the standard configuration in which the tailplane is mounted to the fuselage at the base of the fin.

<span class="mw-page-title-main">British European Airways Flight 548</span> Passenger aircraft crash in 1972 due to pilot error

British European Airways Flight 548 was a scheduled passenger flight from London Heathrow to Brussels that crashed near Staines, England, shortly after take-off on 18 June 1972, killing all 118 people on board. The accident became known as the Staines air disaster. As of 2024, it remains the deadliest air accident in the United Kingdom and was the deadliest air accident involving a Hawker Siddeley Trident. One passenger initially survived the impact but died of his injuries soon after.

<span class="mw-page-title-main">High-lift device</span> Wing surface area adjuster, typically for shortening take-off and landing

In aircraft design and aerospace engineering, a high-lift device is a component or mechanism on an aircraft's wing that increases the amount of lift produced by the wing. The device may be a fixed component, or a movable mechanism which is deployed when required. Common movable high-lift devices include wing flaps and slats. Fixed devices include leading-edge slots, leading edge root extensions, and boundary layer control systems.

<span class="mw-page-title-main">Flap (aeronautics)</span> Anti-stalling high-lift device on aircraft

A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.

<span class="mw-page-title-main">Lufthansa Flight 540</span> 1974 aviation accident in Nairobi, Kenya

Lufthansa Flight 540 was a scheduled commercial flight for Lufthansa, serving the Frankfurt–Nairobi–Johannesburg route.

<span class="mw-page-title-main">Leading-edge slot</span> Anti-stall control surface on aircraft

A leading-edge slot is a fixed aerodynamic feature of the wing of some aircraft to reduce the stall speed and promote good low-speed handling qualities. A leading-edge slot is a spanwise gap in each wing, allowing air to flow from below the wing to its upper surface. In this manner they allow flight at higher angles of attack and thus reduce the stall speed.

<span class="mw-page-title-main">Supercritical airfoil</span> Airfoil designed primarily to delay the onset of wave drag in the transonic speed range

A supercritical aerofoil is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.

<span class="mw-page-title-main">Hunting H.126</span> Type of aircraft

The Hunting H.126 was an experimental aircraft designed and built by British aviation company Hunting Aircraft.

<span class="mw-page-title-main">Hawker Siddeley Trident</span> British trijet T-tail airliner

The Hawker Siddeley HS-121 Trident is a British airliner produced by Hawker Siddeley. In 1957, de Havilland proposed its DH.121 trijet design to a British European Airways (BEA) request. By 1960, de Havilland had been acquired by Hawker Siddeley. The Trident's maiden flight happened on 9 January 1962, and it was introduced on 1 April 1964, two months after its main competitor, the Boeing 727. By the end of the programme in 1978, 117 Tridents had been produced. The Trident was withdrawn from service in 1995.

<span class="mw-page-title-main">Wing configuration</span> Describes the general shape and layout of an aircraft wing

The wing configuration of a fixed-wing aircraft is its arrangement of lifting and related surfaces.

<span class="mw-page-title-main">Leading-edge slat</span> Device increasing the lift of the wing at low speed (take-off and landing)

A slat is an aerodynamic surface on the leading edge of the wing of a fixed-wing aircraft. When retracted, the slat lies flush with the rest of the wing. A slat is deployed by sliding forward, opening a slot between the wing and the slat. Air from below the slat flows through the slot and replaces the boundary layer that has travelled at high speed around the leading edge of the slat, losing a significant amount of its kinetic energy due to skin friction drag. When deployed, slats allow the wings to operate at a higher angle of attack before stalling. With slats deployed an aircraft can fly at slower speeds, allowing it to take off and land in shorter distances. They are used during takeoff and landing and while performing low-speed maneuvers which may take the aircraft close to a stall. Slats are retracted in normal flight to minimize drag.

<span class="mw-page-title-main">Krueger flap</span> Aerodynamic device

Krueger flaps, or Krüger flaps, are lift enhancement devices that may be fitted to the leading edge of an aircraft wing. Unlike slats or droop flaps, the main wing upper surface and its nose is not changed. Instead, a portion of the lower wing is rotated out in front of the main wing leading edge. The Boeing 707 and Boeing 747 used Krueger flaps on the wing leading edge. Several modern aircraft use Krueger flaps between the fuselage and closest engine, but use slats outboard of the closest engine. The Boeing 727 also used a mix of inboard Krueger flaps and outboard slats, although it had no engine between them.

References

Notes

  1. 1 2 Norris & Wagner (2005), pp.67-68
  2. 1 2 Norris & Wagner (2005), p.155
  3. Flight International 29 June 1972, p.933 retrieved 7 March 2014
  4. 1 2 Norris & Wagner (2005), p.67

Bibliography