Vortilon

Last updated
Vortilons can be seen projecting from underneath the center leading edge of the wings of this Hawker 850XP Raytheon hawker 850xp ei-kjc arp.jpg
Vortilons can be seen projecting from underneath the center leading edge of the wings of this Hawker 850XP

Vortilons are fixed aerodynamic devices on aircraft wings used to improve handling at low speeds. [1] [2]

Contents

The vortilon was invented [3] by aerodynamicists working at Douglas Aircraft who had previously developed the engine pylons for the Douglas DC-8. The original pylons which wrapped around the leading edge of the wing had to be cut back to reduce excessive cruise drag. [4] Wind tunnel testing of the next Douglas commercial aircraft, the Douglas DC-9 which had no under-wing engines, showed a cutback engine pylon would be beneficial to wing lift and upwash at the tail at the low speed stall. The pylon was reduced in size and became the vortilon (VORTex-generating-pYLON). [5]

Vortilons consist of one or more flat plates attached to the underside of the wing near its leading edge, aligned with the flight direction. [6] When the speed is reduced and the aircraft approaches stall, the local flow at the leading edge is diverted outwards; this spanwise component of velocity around the vortilon creates a vortex streamed around the top surface, which energises the boundary layer. [6] A more turbulent boundary layer, in turn, delays the local flow separation.

A view of three vortilons on the wing of a Cozy MKIV aircraft Vortilons on a Cozy MKIV.jpg
A view of three vortilons on the wing of a Cozy MKIV aircraft

Vortilons are often used to improve low-speed aileron performance, [1] [7] thereby increasing resistance to spin. They can be used as an alternative to wing fences, which also restrict airflow along the span of the wing. [1] Vortilons only stream vortices at high angles of attack [8] and produce less drag at higher speeds than wing fences. [9] Pylons used to mount jet engines under the wing produce a similar effect. [10]

The occurrence of span-wise flow at high angles of attack, such as observed on swept wings, is an essential requirement for vortilons to become effective. According to Burt Rutan, vortilons installed on straight wings would not have any effect. [11]

Vortilons were first introduced with the McDonnell Douglas DC-9 to achieve a strong nose down pitching moment just beyond the normal stall and their influence ceased to have any effect beyond 30 degrees angle of attack. [10] [12] They have been used on subsequent aircraft, including:


See also

Related Research Articles

<span class="mw-page-title-main">Wing</span> Appendage used for flight

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Stall (fluid dynamics)</span> Abrupt reduction in lift due to flow separation

In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.

<span class="mw-page-title-main">Delta wing</span> Triangle shaped aircraft wing configuration

A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).

<span class="mw-page-title-main">Leading-edge extension</span> Anti-stall control surface on aircraft

A leading-edge extension (LEX) is a small extension to an aircraft wing surface, forward of the leading edge. The primary reason for adding an extension is to improve the airflow at high angles of attack and low airspeeds, to improve handling and delay the stall. A dog tooth can also improve airflow and reduce drag at higher speeds.

<span class="mw-page-title-main">Vortex generator</span> Aerodynamic device

A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface or a rotor blade of a wind turbine. VGs may also be attached to some part of an aerodynamic vehicle such as an aircraft fuselage or a car. When the airfoil or the body is in motion relative to the air, the VG creates a vortex, which, by removing some part of the slow-moving boundary layer in contact with the airfoil surface, delays local flow separation and aerodynamic stalling, thereby improving the effectiveness of wings and control surfaces, such as flaps, elevators, ailerons, and rudders.

<span class="mw-page-title-main">Swept wing</span> Plane wing that angles backwards or forwards

A swept wing is a wing that angles either backward or occasionally forward from its root rather than in a straight sideways direction.

<span class="mw-page-title-main">Wingtip device</span> Aircraft component fixed to the end of the wings to improve performance

Wingtip devices are intended to improve the efficiency of fixed-wing aircraft by reducing drag. Although there are several types of wing tip devices which function in different manners, their intended effect is always to reduce an aircraft's drag. Wingtip devices can also improve aircraft handling characteristics and enhance safety for following aircraft. Such devices increase the effective aspect ratio of a wing without greatly increasing the wingspan. Extending the span would lower lift-induced drag, but would increase parasitic drag and would require boosting the strength and weight of the wing. At some point, there is no net benefit from further increased span. There may also be operational considerations that limit the allowable wingspan.

<span class="mw-page-title-main">Blown flap</span>

Blown flaps, or jet flaps, are powered aerodynamic high-lift devices used on the wings of certain aircraft to improve their low-speed flight characteristics. They use air blown through nozzles to shape the airflow over the rear edge of the wing, directing the flow downward to increase the lift coefficient. There are a variety of methods to achieve this airflow, most of which use jet exhaust or high-pressure air bled off of a jet engine's compressor and then redirected to follow the line of trailing-edge flaps.

<span class="mw-page-title-main">Leading-edge cuff</span> Fixed aerodynamic wing device

A leading-edge cuff is a fixed aerodynamic wing device employed on fixed-wing aircraft to improve the stall and spin characteristics. Cuffs may be either factory-designed or an after-market add-on modification.

<span class="mw-page-title-main">Vertical stabilizer</span> Aircraft component

A vertical stabilizer or tail fin is the static part of the vertical tail of an aircraft. The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim in yaw. It is part of the aircraft empennage, specifically of its stabilizers.

<span class="mw-page-title-main">Supercritical airfoil</span> Airfoil designed primarily to delay the onset of wave drag in the transonic speed range

A supercritical aerofoil is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.

<span class="mw-page-title-main">Wing fence</span> Fixed aerodynamic dividers attached to aircraft wings to prevent their stalling

Wing fences, also known as boundary layer fences and potential fences are fixed aerodynamic devices attached to aircraft wings. Often seen on swept-wing aircraft, wing fences are flat plates fixed to the upper surfaces parallel to the wing chord and in line with the free stream airflow, typically wrapping around the leading edge. By obstructing span-wise airflow along the wing, they prevent the entire wing from stalling at once, as opposed to wingtip devices, which increase aerodynamic efficiency by seeking to recover wing vortex energy.

<span class="mw-page-title-main">Gurney flap</span> Tab on a wing, used to stabilise racecars, helicopters etc.

The Gurney flap is a small tab projecting from the trailing edge of a wing. Typically it is set at a right angle to the pressure-side surface of the airfoil and projects 1% to 2% of the wing chord. This trailing edge device can improve the performance of a simple airfoil to nearly the same level as a complex high-performance design.

<span class="mw-page-title-main">Vortex lift</span> Lift from highly sweptback aircraft wings

Vortex lift is that portion of lift due to the action of leading edge vortices. It is generated by wings with highly sweptback, sharp, leading edges or highly-swept wing-root extensions added to a wing of moderate sweep. It is sometimes known as non-linear lift due to its rapid increase with angle of attack. and controlled separation lift, to distinguish it from conventional lift which occurs with attached flow.

<span class="mw-page-title-main">Pitch-up</span>

In aerodynamics, pitch-up is an uncommanded nose-upwards rotation of an aircraft. It is an undesirable characteristic that has been observed mostly in experimental swept-wing aircraft at high subsonic Mach numbers or high angle of attack.

<span class="mw-page-title-main">Canard (aeronautics)</span> Aircraft configuration in which a small wing is placed in front of the main wing

In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.

<span class="mw-page-title-main">Washout (aeronautics)</span> Characteristic of aircraft wing design

Washout is a characteristic of aircraft wing design which deliberately reduces the lift distribution across the span of an aircraft’s wing. The wing is designed so that the angle of incidence is greater at the wing roots and decreases across the span, becoming lowest at the wing tip. This is usually to ensure that at stall speed the wing root stalls before the wing tips, providing the aircraft with continued aileron control and some resistance to spinning. Washout may also be used to modify the spanwise lift distribution to reduce lift-induced drag.

<span class="mw-page-title-main">Wing configuration</span> Describes the general shape and layout of an aircraft wing

The wing configuration of a fixed-wing aircraft is its arrangement of lifting and related surfaces.

<span class="mw-page-title-main">Leading-edge slat</span> Device increasing the lift of the wing at low speed (take-off and landing)

A slat is an aerodynamic surface on the leading edge of the wing of a fixed-wing aircraft. Slats, when deployed, allow the wings to operate at a higher angle of attack. A higher coefficient of lift is produced as a result of angle of attack and speed, so by deploying slats an aircraft can fly at slower speeds, or take off and land in shorter distances. They are used during takeoff and landing or while performing low speed maneuvers which may take the aircraft close to a stall. Slats are retracted in normal flight to minimize drag.

<span class="mw-page-title-main">Dynamic stall on helicopter rotors</span> Dynamic stall on helicopter rotors

The dynamic stall is one of the hazardous phenomena on helicopter rotors, which can cause the onset of large torsional airloads and vibrations on the rotor blades. Unlike fixed-wing aircraft, of which the stall occurs at relatively low flight speed, the dynamic stall on a helicopter rotor emerges at high airspeeds or/and during manoeuvres with high load factors of helicopters, when the angle of attack(AOA) of blade elements varies intensively due to time-dependent blade flapping, cyclic pitch and wake inflow. For example, during forward flight at the velocity close to VNE, velocity, never exceed, the advancing and retreating blades almost reach their operation limits whereas flows are still attached to the blade surfaces. That is, the advancing blades operate at high Mach numbers so low values of AOA is needed but shock-induced flow separation may happen, while the retreating blade operates at much lower Mach numbers but the high values of AoA result in the stall.

References

  1. 1 2 3 4 "Unicom". Flying: 75. July 2002. Retrieved 2011-10-07.
  2. Houghton, Edward Lewis; Carpenter, Peter William (2003). Aerodynamics for engineering students (5th ed.). Oxford: Butterworth-Heinemann. pp.  514. ISBN   0750651113. OCLC   50441321.
  3. "Stall control device for swept wings".
  4. https://www.scribd.com/document/50976964/Applied-aerodynamics-at-the-Douglas-Aircraft-Company, Fig.23
  5. https://arc.aiaa.org/doi/abs/10.2514/3.43770, p.Fig 13
  6. 1 2 Raymer, Daniel P. (1999). "8.2 Aerodynamic Considerations in Configuration Layout". Aircraft Design: A Conceptual Approach (3rd ed.). Reston, Virginia: American Institute of Aeronautics and Astronautics. p.  183. ISBN   1-56347-281-3.
  7. 1 2 McClellan, J. Mac (November 2002). "Hawker 800XP". Flying: 75. Retrieved 2011-10-07.
  8. Barnard, R.H.; Philpott, D.R. (2010). "Boundary layer and stalling problems on swept wings". Aircraft Flight (4th ed.). Harlow, England: Prentice Hall. p.  75. ISBN   978-0-273-73098-9.
  9. 1 2 McClellan, J. Mac (February 1993). "BAE 1000 Lifts Hawker Name to New Heights". Flying: 88. Retrieved 2011-10-07.
  10. 1 2 "The DC-9 and the Deep Stall". Flight International: 442. 25 March 1965. Retrieved 2011-10-07.
  11. Vortilons for Variezes, The canard pusher, n°42, October 1984
  12. Shevell, Richard S.; Schaufele, Roger D. (November–December 1966). "Aerodynamic Design Features of the DC-9". Journal of Aircraft. 3 (6): 515–523. doi:10.2514/3.43770.
  13. 1 2 Smith, Steve. "Resources for learning about vortilons". NASA Quest. Archived from the original on 2010-11-11. Retrieved 2011-10-07.
  14. https://archive.org/details/DTIC_ADA247719 8-4
  15. https://www.nasa.gov/centers/dryden/pdf/88410main_H-1957V1.pdf,p.87 [ dead link ]