HOTAS, an acronym of hands on throttle-and-stick, is the concept of placing buttons and switches on the throttle lever and flight control stick in an aircraft cockpit. By adopting such an arrangement, pilots are capable of performing all vital functions as well as flying the aircraft without having to remove their hands from the controls.
The HOTAS principle has also been applied outside the aviation sector, and has made a noticeable impact upon both the road vehicle design and gaming industries.
HOTAS was originally applied to military aircraft, starting with the British interceptor aircraft, the English Electric Lightning, in the late 1950s. The concept quickly spread to numerous other aircraft, such as the General Dynamics F-16 Fighting Falcon, IAI Super Phantom, Mikoyan MiG-29, and Eurofighter Typhoon.
In more modern implementations, it is often combined with several other input systems, such as direct voice input and helmet-mounted display, to further reduce workload upon pilots as well as the need to divide their attention between the primary controls and other systems. Apart from the cockpit, the ground control stations (GCS) used by drone operators also commonly have HOTAS principles.
HOTAS is a shorthand term which refers to the typical configuration of the core controls of fighter aircraft. Having all critical switches on the stick and throttle allows the pilot to keep both "hands on throttle-and-stick". Used in combination with a head-up display (HUD), the pilot can focus their attention upon flying the aircraft, manipulating sensors, and engaging targets rather than looking for controls in the cockpit. The goal is to improve pilots' situational awareness, their ability to manipulate switch and button controls in turbulence, under stress, or during high G-force maneuvers, to improve reaction time, to minimize instances when hands must be removed from one or the other of the aircraft's controls to use another aircraft system, and reduce total time spent doing so. [1] [2]
HOTAS enables the pilot to manipulate all the radar's important functions without taking their hands away from the stick or throttle. [3] It is typical for several other functions to be potentially incorporated into this control arrangement; features including a radio communications switch, chaff and flare countermeasure activation, speed brake controls, nose wheel steering, and aerial refueling disconnect may be controlled as such. The precise arrangement of each aircraft's cockpit is unique, having been designed specific to mission requirements, equipment fitout, performance capabilities, and general airframe configuration of that aircraft. For instance, the F-15E Strike Eagle throttle incorporates the ability to interact with an onboard FLIR sensor. [4]
The HOTAS concept was initially pioneered by the Royal Air Force during the 1950s. The newly-developed supersonic point-defense interceptor aircraft, the English Electric Lightning, was furnished with the Ferranti AIRPASS radar and gunsight control system, giving its pilots an earlier implementation of the practice. By 1960, Ferranti were reportedly developing such fire control systems for foreign aircraft as well. [5] [6] HOTAS controls have become commonplace amongst the fighter aircraft of various nations. Various aircraft flown by the United States Air Force, including the General Dynamics F-16 Fighting Falcon and the Fairchild Republic A-10 Thunderbolt II, feature such control systems.
Numerous cockpits of modern military aircraft have seen the HOTAS concept combined or enhanced by the use of further control technologies. One such example is the use of direct voice input; the combination of Voice and HOTAS control schemes has sometimes been referred to as the "V-TAS" concept. A prominent fighter aircraft to be furnished with a V-TAS cockpit is the Eurofighter Typhoon. [7] [8] [ dead link ] Other examples includes the Lockheed Martin F-35 Lightning II, the Dassault Rafale and the Saab JAS 39 Gripen. [9]
Another common enhancement has been the combination of helmet mounted display (HMD) systems. These commonly allow the pilot to control various systems using his line of sight, extending even to guiding missiles by simply looking at the target. One such HMD arrangement is the Soviet "Schlem" system, which has been used on both the Mikoyan MiG-29 and Sukhoi Su-27 fighter aircraft;[ citation needed ] another is used on the F-35, which dispenses with a traditional head-up display mounted on the dashboard in favour of displaying such data via the HMD, allowing pilots to see target info regardless of the direction they are facing. [10] [11] [12]
Several car manufacturers have opted to integrate the HOTAS concept into the control systems of their vehicles. In the ordinary consumer market, a wide range of vehicles have had controls integrated into the steering wheel, typically for ancillary functions such as controlling the entertainment system, adjusting its cruise control and interacting with onboard computers and mobile phones. The purpose of such systems is that drivers can keep their hands upon the wheel, removing the need for the driver to look away from the road while still allowing such interactions to be performed. [13] [14]
Furthermore, numerous racecars have been produced with steering wheels configured to control various aspects of the car's systems, such as communications and gear shifting. Such vehicles have been frequently used in competitive racing, such as Formula One and the Indy Racing League. [15]
Several game controllers have incorporated HOTAS-like control arrangements. Such controllers have been commonly used by flight simulators; one example is the Thrustmaster Warthog, which is claimed to be based on the A-10. Optional controllers for the Xbox One games console include a flight stick that has been described as having HOTAS functionality. [16] Other gaming alternatives include hands on stick and stick (HOSAS) and hands on stick and mouse (HOSAM).
Several ground control stations (GCS) have used HOTAS principles amongst their control schemes. Such stations are commonly used to remotely operate unmanned aerial vehicles. [17] [18]
An interceptor aircraft, or simply interceptor, is a type of fighter aircraft designed specifically for the defensive interception role against an attacking enemy aircraft, particularly bombers and reconnaissance aircraft. Aircraft that are capable of being or are employed as both "standard" air superiority fighters and as interceptors are sometimes known as fighter-interceptors. There are two general classes of interceptor: light fighters, designed for high performance over short range; and heavy fighters, which are intended to operate over longer ranges, in contested airspace and adverse meteorological conditions. While the second type was exemplified historically by specialized night fighter and all-weather interceptor designs, the integration of mid-air refueling, satellite navigation, on-board radar and beyond visual range (BVR) missile systems since the 1960s has allowed most frontline fighter designs to fill the roles once reserved for specialised night/all-weather fighters.
A cockpit or flight deck is the area, on the front part of an aircraft, spacecraft, or submersible, from which a pilot controls the aircraft.
The Eurofighter Typhoon is a European multinational twin-engine, supersonic, canard delta wing, multirole fighter. The Typhoon was designed originally as an air-superiority fighter and is manufactured by a consortium of Airbus, BAE Systems and Leonardo that conducts the majority of the project through a joint holding company, Eurofighter Jagdflugzeug GmbH. The NATO Eurofighter and Tornado Management Agency, representing the UK, Germany, Italy and Spain, manages the project and is the prime customer.
The Panavia Tornado Air Defence Variant (ADV) is a long-range, twin-engine swing-wing interceptor aircraft developed by the European Panavia Aircraft GmbH consortium. It was a specialised derivative of the multirole Panavia Tornado.
The fourth-generation fighter is a class of jet fighters in service from around 1980 to the present, and represents design concepts of the 1970s. Fourth-generation designs are heavily influenced by lessons learned from the previous generation of combat aircraft. Third-generation fighters were often designed primarily as interceptors, being built around speed and air-to-air missiles. While exceptionally fast in a straight line, many third-generation fighters severely lacked in maneuverability, as doctrine held that traditional dogfighting would be impossible at supersonic speeds. In practice, air-to-air missiles of the time, despite being responsible for the vast majority of air-to-air victories, were relatively unreliable, and combat would quickly become subsonic and close-range. This would leave third-generation fighters vulnerable and ill-equipped, renewing an interest in manoeuvrability for the fourth generation of fighters. Meanwhile, the growing costs of military aircraft in general and the demonstrated success of aircraft such as the McDonnell Douglas F-4 Phantom II gave rise to the popularity of multirole combat aircraft in parallel with the advances marking the so-called fourth generation.
The Heinkel He 176 was a German experimental rocket-powered aircraft. It was the world's first aircraft to be propelled solely by a liquid-fueled rocket, making its first powered flight on 20 June 1939 with Erich Warsitz at the controls.
UAV ground control station (GCS) is a land- or sea-based control centre that provides the facilities for human control of Unmanned Aerial Vehicles. It may also refer to a system for controlling rockets within or above the atmosphere, but this is typically described as a Mission Control Centre.
A conventional fixed-wing aircraft flight control system (AFCS) consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered flight controls as they change speed.
A yoke, alternatively known as a control wheel or a control column, is a device used for piloting some fixed-wing aircraft.
Combat flight simulators are vehicle simulation games, amateur flight simulation computer programs used to simulate military aircraft and their operations. These are distinct from dedicated flight simulators used for professional pilot and military flight training which consist of realistic physical recreations of the actual aircraft cockpit, often with a full-motion platform.
Project Kahu was a major upgrade for the A-4K Skyhawk attack aircraft operated by the Royal New Zealand Air Force (RNZAF) in the mid-1980s.
Thrustmaster is an American designer, developer and manufacturer of joysticks, game controllers, and steering wheels for PCs and video gaming consoles. It has licensing agreements with third party brands as Airbus, Boeing, Ferrari, Gran Turismo and U.S. Air Force as well as licensing some products under Sony's PlayStation and Microsoft's Xbox licenses.
A multirole combat aircraft (MRCA) is a combat aircraft intended to perform different roles in combat. These roles can include air to air combat, air support, aerial bombing, reconnaissance, electronic warfare, and suppression of air defenses.
Direct voice input (DVI), sometimes called voice input control (VIC), is a style of human–machine interaction "HMI" in which the user makes voice commands to issue instructions to the machine through speech recognition.
A centre stick, or simply control stick, is an aircraft cockpit arrangement where the control column is located in the center of the cockpit either between the pilot's legs or between the pilots' positions. Since the throttle controls are typically located to the left of the pilot, the right hand is used for the stick, although left-hand or both-hands operation is possible if required.
A side-stick or sidestick controller is an aircraft control stick that is located on the side console of the pilot, usually on the righthand side, or outboard on a two-seat flightdeck. Typically this is found in aircraft that are equipped with fly-by-wire control systems.
The IAI Nammer was a fighter aircraft developed in the Israeli aerospace manufacturing Israel Aerospace Industries (IAI) during the late 1980s and early 1990s. The programme was pursued as a private venture and the resultant aircraft was intended for the export market.
A helmet-mounted display (HMD) is a headworn device that uses displays and optics to project imagery and/or symbology to the eyes. It provides visual information to the user where head protection is required – most notably in military aircraft. The display-optics assembly can be attached to a helmet or integrated into the design of the helmet. An HMD provides the pilot with situation awareness, an enhanced image of the scene, and in military applications cue weapons systems, to the direction their head is pointing. Applications which allow cuing of weapon systems are referred to as helmet-mounted sight and display (HMSD) or helmet-mounted sights (HMS).
AIRPASS was a British aircraft interception radar and fire-control radar system developed by Ferranti. It was the world's first airborne monopulse radar system and fed data to the world's first head-up display. The name is an acronym for "Aircraft Interception Radar and Pilot's Attack Sight System". In the Royal Air Force (RAF) it was given the official name Radar, Aircraft Interception, Mark 23, normally shortened to AI.23. AIRPASS was used on the English Electric Lightning throughout its lifetime.
Radar, Aircraft Interception, Mark 20, or AI.20 for short, also known by its rainbow codename Green Willow, was a prototype aircraft interception (AI) radar developed by EKCO for the English Electric Lightning interceptor aircraft. It was ordered as a backup system in case the more advanced AIRPASS radar from Ferranti failed to develop, but when AIRPASS entered testing in 1955, AI.20 was dropped. The system was used, almost unchanged, as the basis for the Red Steer tail warning radar used in the Handley Page Victor and Avro Vulcan strategic bombers.