In aviation, the turn and slip indicator (T/S, a.k.a. turn and bank indicator) and the turn coordinator (TC) variant are essentially two aircraft flight instruments in one device. One indicates the rate of turn, or the rate of change in the aircraft's heading; the other part indicates whether the aircraft is in coordinated flight, showing the slip or skid of the turn. The slip indicator is actually an inclinometer that at rest displays the angle of the aircraft's transverse axis with respect to horizontal, and in motion displays this angle as modified by the acceleration of the aircraft. [1] The most commonly used units are degrees per second (deg/s) or minutes per turn (min/tr).[ citation needed ]
The turn and slip indicator can be referred to as the turn and bank indicator, although the instrument does not respond directly to bank angle. Neither does the turn coordinator, but it does respond to roll rate, which enables it to respond more quickly to the start of a turn. [2]
The turn indicator is a gyroscopic instrument that works on the principle of precession. The gyro is mounted in a gimbal. The gyro's rotational axis is in-line with the lateral (pitch) axis of the aircraft, while the gimbal has limited freedom around the longitudinal (roll) axis of the aircraft.
As the aircraft yaws, a torque force is applied to the gyro around the vertical axis, due to aircraft yaw, which causes gyro precession around the roll axis. The gyro spins on an axis that is 90 degrees relative to the direction of the applied yaw torque force. The gyro and gimbal rotate (around the roll axis) with limited freedom against a calibrated spring.
The torque force against the spring reaches an equilibrium and the angle that the gimbal and gyro become positioned is directly connected to the display needle, thereby indicating the rate of turn. [3] In the turn coordinator, the gyro is canted 30 degrees from the horizontal so it responds to roll as well as yaw.
The display contains hash marks for the pilot's reference during a turn. When the needle is lined up with a hash mark, the aircraft is performing a "standard rate turn" which is defined as three degrees per second, known in some countries as "rate one". This translates to two minutes per 360 degrees of turn (a complete circle). Indicators are marked as to their sensitivity, [4] with "2 min turn" for those whose hash marks correspond to a standard rate or two-minute turn, and "4 min turn" for those, used in faster aircraft, that show a half standard rate or four-minute turn. The supersonic Concorde jet aircraft and many military jets are examples of aircraft that use 4 min. turn indicators. The hash marks are sometimes called "dog houses", because of their distinct shape on various makes of turn indicators. Under instrument flight rules, using these figures allows a pilot to perform timed turns in order to conform with the required air traffic patterns. For a change of heading of 90 degrees, a turn lasting 30 seconds would be required to perform a standard rate or "rate one" turn.
Coordinated flight indication is obtained by using an inclinometer, which is recognized as the "ball in a tube". An inclinometer contains a ball sealed inside a curved glass tube, which also contains a liquid to act as a damping medium. The original form of the indicator is in effect a spirit level with the tube curved in the opposite direction and a bubble standing in for the ball. [5] In some early aircraft the indicator was merely a pendulum with a dashpot for damping. The ball gives an indication of whether the aircraft is slipping, skidding or in coordinated flight. The ball's movement is caused by the force of gravity and the aircraft's centripetal acceleration. When the ball is centered in the middle of the tube, the aircraft is said to be in coordinated flight. If the ball is on the inside (wing down side) of a turn, the aircraft is slipping. And finally, when the ball is on the outside (wing up side) of the turn, the aircraft is skidding.
A simple alternative to the balance indicator used on gliders is a yaw string, which allows the pilot to simply view the string's movements as rudimentary indication of aircraft balance.
The turn coordinator (TC) is a further development of the turn and slip indicator (T/S) with the major difference being the display and the axis upon which the gimbal is mounted. The display is that of a miniature airplane as seen from behind. This looks similar to that of an attitude indicator. "NO PITCH INFORMATION" is usually written on the instrument to avoid confusion regarding the aircraft's pitch, which can be obtained from the artificial horizon instrument.
In contrast to the T/S, the TC's gimbal is pitched up 30 degrees from the transverse axis. This causes the instrument to respond to roll as well as yaw. This allows the instrument to display a change more quickly as it will react to the change in roll before the aircraft has even begun to yaw. Although this instrument reacts to changes in the aircraft's roll, it does not display the roll attitude.
The turn coordinator may be used as a performance instrument when the attitude indicator has failed. This is called "partial panel" operations. It can be unnecessarily difficult or even impossible if the pilot does not understand that the instrument is showing roll rates as well as turn rates. The usefulness is also impaired if the internal dashpot is worn out. In the latter case, the instrument is underdamped and in turbulence will indicate large full-scale deflections to the left and right, all of which are actually roll rate responses.
Slipping and skidding within a turn is sometimes referred to as a sloppy turn, due to the perceptive discomfort it can cause to the pilot and passengers. When the aircraft is in a balanced turn (ball is centered), passengers experience gravity directly in line with their seat (force perpendicular to seat). With a well balanced turn, passengers may not even realize the aircraft is turning unless they are viewing objects outside the aircraft.
While aircraft slipping and skidding are often undesired in a usual turn that maintains altitude, slipping of the aircraft can be used for practical purposes. Intentionally putting an aircraft into a slip is used as a forward slip and a sideslip. These slips are performed by applying opposite inputs of the aileron and rudder controls. A forward slip allows a pilot to quickly drop altitude without gaining unnecessary speed, while a sideslip is one method utilized to perform a crosswind landing.
Although the Turn and Slip Indicator (and later the Turn Coordinator) was felt to be a necessary and required instrument for flight under instrument flight rules, the Federal Aviation Administration (FAA) has more recently decided that these instruments are obsolete in today's flight environment. Advisory Circular No. 91-75, issued on 6/25/2003, states the following: [section 5 b] "...in today's air traffic control system, there is little need for precisely measured standard rate turns or timed turns based on standard rate." The Advisory Circular further states: "...the FAA believes, and all other commenters apparently agree...the rate-of-turn indicator is no longer as useful as an instrument which gives both horizontal and vertical attitude information." Thus one can now legally replace a Turn-and-Slip or Turn Coordinator instrument with a second attitude indicator, preferably driven by a system different from the primary flight display. So if the aircraft primary display is vacuum powered, the second attitude indicator should be electric, and vice-versa. This gives more flight information than the rate-of-turn indicator and gives a safety measure of redundancy of systems. The slip indicator (the "ball") is still required. The slip indicator may be mounted separately in the panel, or, some attitude indicators now have a slip indicator included in the display.
A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.
Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with data about the flight situation of that aircraft, such as altitude, airspeed, vertical speed, heading and much more other crucial information in flight. They improve safety by allowing the pilot to fly the aircraft in level flight, and make turns, without a reference outside the aircraft such as the horizon. Visual flight rules (VFR) require an airspeed indicator, an altimeter, and a compass or other suitable magnetic direction indicator. Instrument flight rules (IFR) additionally require a gyroscopic pitch-bank, direction and rate of turn indicator, plus a slip-skid indicator, adjustable altimeter, and a clock. Flight into instrument meteorological conditions (IMC) require radio navigation instruments for precise takeoffs and landings.
The heading indicator (HI), also known as a directional gyro (DG) or direction indicator (DI), is a flight instrument used in an aircraft to inform the pilot of the aircraft's heading.
The attitude indicator (AI), formerly known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to the actual horizon. It is a primary instrument for flight in instrument meteorological conditions.
An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.
In aeronautics, dihedral is the angle between the left and right wings of an aircraft. "Dihedral" is also used to describe the effect of sideslip on the rolling of the aircraft.
The Saturn V instrument unit is a ring-shaped structure fitted to the top of the Saturn V rocket's third stage (S-IVB) and the Saturn IB's second stage. It was immediately below the SLA (Spacecraft/Lunar Module Adapter) panels that contained the Apollo Lunar Module. The instrument unit contains the guidance system for the Saturn V rocket. Some of the electronics contained within the instrument unit are a digital computer, analog flight control computer, emergency detection system, inertial guidance platform, control accelerometers, and control rate gyros. The instrument unit (IU) for Saturn V was designed by NASA at Marshall Space Flight Center (MSFC) and was developed from the Saturn I IU. NASA's contractor to manufacture the Saturn V Instrument Unit was International Business Machines (IBM).
A slip is an aerodynamic state where an aircraft is moving somewhat sideways as well as forward relative to the oncoming airflow or relative wind. In other words, for a conventional aircraft, the nose will be pointing in the opposite direction to the bank of the wing(s). The aircraft is not in coordinated flight and therefore is flying inefficiently.
An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.
In aviation, aircraft compass turns are turns made in an aircraft using only a magnetic compass for guidance.
In aviation, an electronic flight instrument system (EFIS) is a flight instrument display system in an aircraft cockpit that displays flight data electronically rather than electromechanically. An EFIS normally consists of a primary flight display (PFD), multi-function display (MFD), and an engine indicating and crew alerting system (EICAS) display. Early EFIS models used cathode ray tube (CRT) displays, but liquid crystal displays (LCD) are now more common. The complex electromechanical attitude director indicator (ADI) and horizontal situation indicator (HSI) were the first candidates for replacement by EFIS. Now, however, few flight deck instruments cannot be replaced by an electronic display.
Aerobatic maneuvers are flight paths putting aircraft in unusual attitudes, in air shows, dogfights or competition aerobatics. Aerobatics can be performed by a single aircraft or in formation with several others. Nearly all aircraft are capable of performing aerobatics maneuvers of some kind, although it may not be legal or safe to do so in certain aircraft.
The Garmin G1000 is an electronic flight instrument system (EFIS) typically composed of two display units, one serving as a primary flight display, and one as a multi-function display. Manufactured by Garmin Aviation, it serves as a replacement for most conventional flight instruments and avionics. Introduced in June 2004, the system has since become one of the most popular integrated glass cockpit solutions for general aviation and business aircraft.
A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around a Liquid-crystal display or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts.
Helicopter flight controls are used to achieve and maintain controlled aerodynamic helicopter flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a desired way. To tilt forward and back (pitch) or sideways (roll) requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.
The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed following steady non-oscillating flight.
In aviation, coordinated flight of an aircraft is flight without sideslip.
The yaw string, also known as a slip string, is a simple device for indicating a slip or skid in an aircraft in flight. It performs the same function as the slip-skid indicator ball, but is more sensitive, and does not require the pilot to look down at the instrument panel. Technically, it measures sideslip angle, not yaw angle, but this indicates how the aircraft must be yawed to return the sideslip angle to zero.
The ST-124-M3 inertial platform was a device for measuring acceleration and attitude of the Saturn V launch vehicle. It was carried by the Saturn V Instrument Unit, a 3-foot-high (0.91 m), 22-foot-diameter (6.7 m) section of the Saturn V that fit between the third stage (S-IVB) and the Apollo spacecraft. Its nomenclature means "stable table" (ST) for use in the Moon mission (M), and it has 3 gimbals.
The LN-3 inertial navigation system is an inertial navigation system (INS) that was developed in the 1960s by Litton Industries. It equipped the Lockheed F-104 Starfighter versions used as strike aircraft in European forces. An inertial navigation system is a system which continually determines the position of a vehicle from measurements made entirely within the vehicle using sensitive instruments. These instruments are accelerometers which detect and measure vehicle accelerations, and gyroscopes which act to hold the accelerometers in proper orientation.
{{cite web}}
: CS1 maint: archived copy as title (link){{cite web}}
: CS1 maint: archived copy as title (link)