The attitude indicator (AI), formerly known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to the actual horizon. [1] [2] It is a primary instrument for flight in instrument meteorological conditions. [3] [4]
Attitude is always presented to users in the unit degrees (°). However, inner workings such as sensors, data and calculations may use a mix of degrees and radians, as scientists and engineers may prefer to work with radians.
Before the advent of aviation, artificial horizons were used in celestial navigation. Proposals of such devices based on gyroscopes, or spinning tops, date back to the 1740s, [5] including the work of John Serson. Later implementations, also known as bubble horizons, were based on bubble levels and attached to a sextant. [6] In the 2010s, remnants of an artificial horizon using liquid mercury were recovered from the wreck of HMS Erebus. [7]
The essential components of the AI include a symbolic miniature aircraft mounted so that it appears to be flying relative to the horizon. An adjustment knob, to account for the pilot's line of vision, moves the aircraft up and down to align it against the horizon bar. The top half of the instrument is blue to represent the sky, while the bottom half is brown to represent the ground. The bank index at the top shows the aircraft angle of bank. Reference lines in the middle indicate the degree of pitch, up or down, relative to the horizon. [2] [1]
Most Russian-built aircraft have a somewhat different design. The background display is colored as in a Western instrument, but moves up and down only to indicate pitch. A symbol representing the aircraft (which is fixed in a Western instrument) rolls left or right to indicate bank angle. [8] A proposed hybrid version of the Western and Russian systems would be more intuitive, but has never caught on. [9]
The heart of the AI is a gyroscope (gyro) that spins at high speed, from either an electric motor, or through the action of a stream of air pushing on rotor vanes placed along its periphery. The stream of air is provided by a vacuum system, driven by a vacuum pump, or a venturi. Air passing through the narrowest portion of a venturi has lower air pressure through Bernoulli's principle. The gyro is mounted in a double gimbal, which allows the aircraft to pitch and roll as the gyro stays vertically upright. A self-erecting mechanism, actuated by gravity, counteracts any precession due to bearing friction. It may take a few minutes for the erecting mechanism to bring the gyros to a vertical upright position after the aircraft engine is first powered up. [2] [1] [10]
Attitude indicators have mechanisms that keep the instrument level with respect to the direction of gravity. [11] The instrument may develop small errors, in pitch or bank during extended periods of acceleration, deceleration, turns, or due to the earth curving underneath the plane on long trips. To start with, they often have slightly more weight in the bottom, so that when the aircraft is resting on the ground they will hang level and therefore they will be level when started. But once they are started, that pendulous weight in the bottom will not pull them level if they are out of level, but instead its pull will cause the gyro to precess. In order to let the gyro very slowly orient itself to the direction of gravity while in operation, the typical vacuum powered gyro has small pendulums on the rotor casing that partially cover air holes. When the gyro is out of level with respect to the direction of gravity, the pendulums will swing in the direction of gravity and either uncover or cover the holes, such that air is allowed or prevented from jetting out of the holes, and thereby applying a small force to orient the gyro towards the direction of gravity. Electric powered gyros may have different mechanisms to achieve a similar effect. [12]
Older AIs were limited in the amount of pitch or roll that they would tolerate. Exceeding these limits would cause the gyro to tumble as the gyro housing contacted the gimbals, causing a precession force. Preventing this required a caging mechanism to lock the gyro if the pitch exceed 60° and the roll exceeded 100°. Modern AIs do not have this limitation and therefore do not require a caging mechanism. [2] [1]
Attitude indicators are also used on crewed spacecraft and are called Flight Director Attitude Indicators (FDAI), where they indicate the craft's yaw angle (nose left or right), pitch (nose up or down), roll, and orbit relative to a fixed-space inertial reference frame from an Inertial Measurement Unit (IMU). [13] The FDAI can be configured to use known positions relative to Earth or the stars, so that the engineers, scientists and astronauts can communicate the relative position, attitude, and orbit of the craft. [14] [15]
Attitude and Heading Reference Systems (AHRS) are able to provide three-axis information based on ring laser gyroscopes, that can be shared with multiple devices in the aircraft, such as "glass cockpit" primary flight displays (PFDs). Rather than using a spinning gyroscope, modern AHRS use solid-state electronics, low-cost inertial sensors, rate gyros, and magnetometers. [2] : 8–20 [1] : 5–22
With most AHRS systems, if an aircraft's AIs have failed there will be a standby AI located in the center of the instrument panel, where other standby basic instruments such as the airspeed indicator and altimeter are also available. These mostly mechanical standby instruments may remain available even if the electronic flight instruments fail, although the standby attitude indicator may be electrically driven and will, after a short time, fail if its electrical power fails. [16]
The Attitude Direction Indicator (ADI), or Flight Director Indicator (FDI), is an AI integrated with a Flight Director System (FDS). The ADI incorporates a computer that receives information from the navigation system, such as the AHRS, and processes this information to provide the pilot with a 3-D flight trajectory cue to maintain a desired path. The cue takes the form of V steering bars. The aircraft is represented by a delta symbol and the pilot flies the aircraft so that the delta symbol is placed within the V steering bars. [1] : 5–23, 5–24
A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.
Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with data about the flight situation of that aircraft, such as altitude, airspeed, vertical speed, heading and much more other crucial information in flight. They improve safety by allowing the pilot to fly the aircraft in level flight, and make turns, without a reference outside the aircraft such as the horizon. Visual flight rules (VFR) require an airspeed indicator, an altimeter, and a compass or other suitable magnetic direction indicator. Instrument flight rules (IFR) additionally require a gyroscopic pitch-bank, direction and rate of turn indicator, plus a slip-skid indicator, adjustable altimeter, and a clock. Flight into instrument meteorological conditions (IMC) require radio navigation instruments for precise takeoffs and landings.
The heading indicator (HI), also known as a directional gyro (DG) or direction indicator (DI), is a flight instrument used in an aircraft to inform the pilot of the aircraft's heading.
The basic principles of air navigation are identical to general navigation, which includes the process of planning, recording, and controlling the movement of a craft from one place to another.
An autopilot is a system used to control the path of a vehicle without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.
A head-up display, or heads-up display, also known as a HUD or head-up guidance system (HGS), is any transparent display that presents data without requiring users to look away from their usual viewpoints. The origin of the name stems from a pilot being able to view information with the head positioned "up" and looking forward, instead of angled down looking at lower instruments. A HUD also has the advantage that the pilot's eyes do not need to refocus to view the outside after looking at the optically nearer instruments.
A glass cockpit is an aircraft cockpit that features an array of electronic (digital) flight instrument displays, typically large LCD screens, rather than traditional analog dials and gauges. While a traditional cockpit relies on numerous mechanical gauges to display information, a glass cockpit uses several multi-function displays and a primary flight display driven by flight management systems, that can be adjusted to show flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has also become widely available in small aircraft.
An instrument landing system localizer, or simply localizer, is a system of horizontal guidance in the instrument landing system, which is used to guide aircraft along the axis of the runway.
Spatial disorientation is the inability to determine position or relative motion, commonly occurring during periods of challenging visibility, since vision is the dominant sense for orientation. The auditory system, vestibular system, and proprioceptive system collectively work to coordinate movement with balance, and can also create illusory nonvisual sensations, resulting in spatial disorientation in the absence of strong visual cues.
An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch, and yaw. These are sometimes referred to as MARG sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers. They are designed to replace traditional mechanical gyroscopic flight instruments.
In aviation, an electronic flight instrument system (EFIS) is a flight instrument display system in an aircraft cockpit that displays flight data electronically rather than electromechanically. An EFIS normally consists of a primary flight display (PFD), multi-function display (MFD), and an engine indicating and crew alerting system (EICAS) display. Early EFIS models used cathode ray tube (CRT) displays, but liquid crystal displays (LCD) are now more common. The complex electromechanical attitude director indicator (ADI) and horizontal situation indicator (HSI) were the first candidates for replacement by EFIS. Now, however, few flight deck instruments cannot be replaced by an electronic display.
A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around a Liquid-crystal display or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts.
The horizontal situation indicator is an aircraft flight instrument normally mounted below the artificial horizon in place of a conventional heading indicator. It combines a heading indicator with a VHF omnidirectional range-instrument landing system (VOR-ILS) display. This reduces pilot workload by lessening the number of elements in the pilot's instrument scan to the six basic flight instruments. Among other advantages, the HSI offers freedom from the confusion of reverse sensing on an instrument landing system localizer back course approach. As long as the needle is set to the localizer front course, the instrument will indicate whether to fly left or right, in either direction of travel.
In aviation, a flight director (FD) is a flight instrument that is overlaid on the attitude indicator that shows the pilot of an aircraft the attitude required to execute the desired flight path. Flight directors are mostly commonly used during approach and landing. They can be used with or without autopilot systems.
In aviation, a graveyard spiral is a type of dangerous spiral dive entered into accidentally by a pilot who is not trained or not proficient in flying in instrument meteorological conditions (IMC). Other names for this phenomenon include suicide spiral, deadly spiral, death spiral and vicious spiral.
An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.
The LN-3 inertial navigation system is an inertial navigation system (INS) that was developed in the 1960s by Litton Industries. It equipped the Lockheed F-104 Starfighter versions used as strike aircraft in European forces. An inertial navigation system is a system which continually determines the position of a vehicle from measurements made entirely within the vehicle using sensitive instruments. These instruments are accelerometers which detect and measure vehicle accelerations, and gyroscopes which act to hold the accelerometers in proper orientation.
Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.
An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. When the magnetometer is included, IMUs are referred to as IMMUs.
In aviation, the turn and slip indicator and the turn coordinator (TC) variant are essentially two aircraft flight instruments in one device. One indicates the rate of turn, or the rate of change in the aircraft's heading; the other part indicates whether the aircraft is in coordinated flight, showing the slip or skid of the turn. The slip indicator is actually an inclinometer that at rest displays the angle of the aircraft's transverse axis with respect to horizontal, and in motion displays this angle as modified by the acceleration of the aircraft. The most commonly used units are degrees per second (deg/s) or minutes per turn (min/tr).