Moldanubian Zone

Last updated
Most important structures and zones of the Variscan or Hercynian Orogeny in Europe. Hercynian structures Europe-en.svg
Most important structures and zones of the Variscan or Hercynian Orogeny in Europe.

The Moldanubian Zone is in the regional geology of Europe a tectonic zone formed during the Variscan or Hercynian Orogeny (400 to 300 million years ago, during the Devonian and Carboniferous periods). The Moldanubian Zone crops out in the Bohemian Massif and the southern part of the Black Forest and Vosges and contains the highest grade metamorphic rocks of Variscan age in Europe.

Contents

The Moldanubian Zone was introduced by German geologist Franz Kossmat in 1927. It has a generally higher grade of metamorphism than the Saxothuringian Zone to the northwest. The contact between the two is a thrust over which the Moldanubian Zone moved over the Saxothuringian Zone during the Variscan Orogeny. In the east the Moldanubian Zone is thrusted over the Moravo-Silesian Zone, which is also generally lower grade.

Geology

The Moldanubian Zone of the Bohemian Massif can be divided into two tectonic units: the Teplá-Barrandian Zone (or "Bohemicum") and the Moldanubian Zone sensu stricto ("Moldanubicum"). The last contains large granitoid plutons and nappes.

Moldanubicum

The Moldanubicum or Moldanubian sensu stricto consists of high grade metamorphic rocks. The protoliths may have a Proterozoic age, but their origins or ages are mostly unknown. [2]

The tectonostratigraphy of the Moldanubian Zone sensu stricto is divided into three main units:

Intrusions

These three tectonic units and their contacts are cut off by large batholith intrusions of late Variscan ages. The largest ones are the South Bohemian Batholith and the Central Bohemian Batholith. They consist of many different generations of intrusions often cutting through each other.

Tectonic history

The Moldanubian Zone is interpreted as the lower crust of a microcontinent called Cadomia or Armorica. This small piece of continental crust was sandwiched in between the larger continents of Laurussia (to the north) and Gondwana (to the south) during the Variscan Orogeny. Some authors think the microcontinent stretched far enough to also encompass the pre-Variscan basement of the Armorican Massif, others think a string of small microcontinents more reasonable. [4]

Notes

  1. Map is based on Franke (1992, 2000), Matte (2001), von Raumer et al. (2003) and Walter (2003)
  2. 1 2 Franke (2000)
  3. Ziegler (1990), p 50
  4. See Von Raumer et al. (2003) for one reconstruction of this string of microcontinents

Literature

Related Research Articles

Charnockite A type of granite containing orthopyroxene

Charnockite is any orthopyroxene-bearing quartz-feldspar rock formed at high temperature and pressure, commonly found in granulite facies metamorphic regions, sensu stricto as an end-member of the charnockite series.

Variscan orogeny Collision of tectonic plates resulting in the creation of mountains

The Variscan or Hercynianorogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea.

Grenville orogeny

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

Narryer Gneiss Terrane A geological complex of ancient rocks in Western Australia

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

Gascoyne Complex A terrane of Proterozoic granite and metamorphic rock in Western Australia

The Gascoyne Complex is a terrane of Proterozoic granite and metamorphic rock in the central-western part of Western Australia. The complex outcrops at the exposed western end of the Capricorn Orogen, a 1,000 km-long arcuate belt of folded, faulted and metamorphosed rocks between two Archean cratons; the Pilbara craton to the north and the Yilgarn craton to the south. The Gascoyne Complex is thought to record the collision of these two different Archean continental fragments during the Capricorn Orogeny at 1830–1780 Ma.

Rhenohercynian Zone A fold belt of west and central Europe, formed during the Hercynian orogeny

The Rhenohercynian Zone or Rheno-Hercynian zone in structural geology describes a fold belt of west and central Europe, formed during the Hercynian orogeny. The zone consists of folded and thrusted Devonian and early Carboniferous sedimentary rocks that were deposited in a back-arc basin along the southern margin of the then existing paleocontinent Laurussia.

Saxothuringian Zone A structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe

The Saxothuringian Zone, Saxo-Thuringian zone or Saxothuringicum is in geology a structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe. Because rocks of Hercynian age are in most places covered by younger strata, the zone is not everywhere visible at the surface. Places where it crops out are the northern Bohemian Massif, the Spessart, the Odenwald, the northern parts of the Black Forest and Vosges and the southern part of the Taunus. West of the Vosges terranes on both sides of the English Channel are also seen as part of the zone, for example the Lizard complex in Cornwall or the Léon Zone of the Armorican Massif (Brittany).

Mid-German Crystalline High

The Mid-German Crystalline High is a structural high in the Paleozoic geology of Germany. The high forms a northeast-southwest oriented zone through Germany, but actual rock outcrops are sparse since Paleozoic basement rocks are in most of central Germany overlain by younger sedimentary rocks. The Mid-German Crystalline High crops out in the Odenwald, the Spessart, the northern Vosges and some small other massifs.

Bohemian Massif

The Bohemian Massif is in the geology of Central Europe a large massif stretching over central Czech Republic, eastern Germany, southern Poland and northern Austria. It is surrounded by four ranges: the Ore Mountains in the northwest, the Sudetes in the northeast, the Bohemian-Moravian Highlands in the southeast, and the Bohemian Forest (Šumava) in the southwest. The massif encompasses a number of mittelgebirges and consists of crystalline rocks, which are older than the Permian and therefore deformed during the Variscan Orogeny.

The Massif Central is one of the two large basement massifs in France, the other being the Armorican Massif. The Massif Central's geological evolution started in the late Neoproterozoic and continues to this day. It has been shaped mainly by the Caledonian orogeny and the Variscan orogeny. The Alpine orogeny has also left its imprints, probably causing the important Cenozoic volcanism. The Massif Central has a very long geological history, underlined by zircon ages dating back into the Archaean 3 billion years ago. Structurally it consists mainly of stacked metamorphic basement nappes.

Geology of the Pyrenees European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

Lewisian complex

The Lewisian complex or Lewisian gneiss is a suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland, forming part of the Hebridean Terrane and the North Atlantic Craton. These rocks are of Archaean and Paleoproterozoic age, ranging from 3.0–1.7 billion years (Ga). They form the basement on which the Torridonian and Moine Supergroup sediments were deposited. The Lewisian consists mainly of granitic gneisses with a minor amount of supracrustal rocks. Rocks of the Lewisian complex were caught up in the Caledonian orogeny, appearing in the hanging walls of many of the thrust faults formed during the late stages of this tectonic event.

Sveconorwegian orogeny

The Sveconorwegian orogeny was an orogenic system active 1140 to 960 million years ago and currently exposed as the Sveconorwegian orogenic belt in southwestern Sweden and southern Norway. In Norway the orogenic belt is exposed southeast of the front of the Caledonian nappe system and in nappe windows. The Sveconorwegian orogen is commonly grouped within the Grenvillian Mesoproterozoic orogens. Contrary to many other known orogenic belts the Sveconorwegian orogens eastern border does not have any known suture zone with ophiolites.

The Mars Hill Terrane (MHT) is a belt of rocks exposed in the southern Appalachian Mountains, between Roan Mountain, North Carolina and Mars Hill, North Carolina. The terrane is located at the junction between the Western Blue Ridge and the Eastern Blue Ridge Mountains.

The geology of Uganda extends back to the Archean and Proterozoic eons of the Precambrian, and much of the country is underlain by gneiss, argillite and other metamorphic rocks that are sometimes over 2.5 billion years old. Sedimentary rocks and new igneous and metamorphic units formed throughout the Proterozoic and the region was partially affected by the Pan-African orogeny and Snowball Earth events. Through the Mesozoic and Cenozoic, ancient basement rock has weathered into water-bearing saprolite and the region has experienced periods of volcanism and rift valley formation. The East Africa Rift gives rise to thick, more geologically recent sediment sequences and the country's numerous lakes. Uganda has extensive natural resources, particularly gold.

The geology of Quebec involves several different geologic provinces, made up of ancient Precambrian crystalline igneous and metamorphic rock, overlain by younger sedimentary rocks and soils. Most of southern Quebec is dominated by the Grenville Province, while the vast north is divided between the large Superior Province and the Churchill Province to the east, near Labrador.

The geology of the Czech Republic is highly tectonically complex, split between the Western Carpathian Mountains and the Bohemian Massif.

Geology of Peru

The geology of Peru includes ancient Proterozoic rocks, Paleozoic and Mesozoic volcanic and sedimentary rocks, and numerous basins and the Andes Mountains formed in the Cenozoic.

The Transamazonian orogeny was a mountain building event in the Paleoproterozoic, affecting what is now the São Francisco Craton and Guyana Shield. During the orogeny from 2.14 to 1.94 billion years ago two small Archean proto-continents—including the greenstone belt-dominated Gavião Block and the calc-alkaline charnockite and enderbite-dominated Jequié Block—collided. The Contendas-Jacobina Lineament represents a suture zone where the collision occurred and the Gavião Block partially subducted under the Jequié Block. At the same time, another small continental fragment, the Serrinha Block, may have collided as well and was extensively reworked and metamorphosed, with orthogneiss and migmatite reaching amphibolite-grade on the sequence of metamorphic facies. The Serrinha Block is the basement rock of the Rio Itapicuru granite-greenstone belt. Several magmatic arcs formed between the colliding proto-continent blocks, including the Salvador-Curaçá Belt, Contendas-Mirante Belt, Jacobina-Mundo Novo Belt and Itabuna-Atlantic Belt. To the west of the Gavião Block, the Guanambi-Urandi Batholith formed with monzonite, granite intrusions and syenite, which was subsequently covered by Neoproterozoic sedimentary rocks.

The Mangaroon orogeny was an orogenic event in what is now Western Australia between 1.68 and 1.62 billion years ago in the Proterozoic, preserved in the rocks of the large Gascoyne Province.