NS2 (HCV)

Last updated
HCV genome HCV genome.png
HCV genome

Nonstructural protein 2 (NS2) is a viral protein found in the hepatitis C virus. [1] It is also produced by influenza viruses, and is alternatively known as the nuclear export protein (NEP). [2]

Contents

Role in Hepatitis C virus

NS2 is one of seven nonstructural proteins in HCV, with each being encoded near the carboxy-terminal end of the positive-strand RNA virus. Once translated it is 217 amino acids in length and has a molecular weight of approximately 23 kDa. NS2 possesses a hydrophobic amino-terminal subdomain as well as a carboxy-terminal cytoplasmic domain, with the amino-terminal subdomain containing up to three putative transmembrane segments. [3]

NS2 proteins are post-translationally processed by the HPV-encoded cysteine protease NS2-3, which is formed by residues 94-217 of NS2 itself as well as residues 1-181 of nonstructural protein 3 (NS3). [4] [5] The NS2-3 autoprotease acts by making a single cleavage between the junction of NS2 and NS3. While the NS2 protein itself is unnecessary for replication of the HCV virus (as demonstrated by HPV replicons that were able to self-replicate after removal of the entire C to NS2 coding region), [6] [7] this cleavage of the NS2/NS3 junction is critical. [8]

Despite being dispensable in the replication of HCV, NS2 does play an important role in the production of new HCV particles. [3] Multiple studies have shown that the full NS2 RNA sequence (and thus protein) is necessary for viral assembly. [9] [10] While it is somewhat uncertain as to why this is, one group demonstrated that viral particle production in HPV chimeras was most efficient when the chimeric fusions were conducted directly downstream of the first transmembrane domain of NS2. [11] This discovery implies that the first transmembrane segment of NS2’s hydrophobic amino-terminal subdomain physically interacts with upstream structural components of the HPV sequence. [3] Its structure is indeed highly conserved between HCV genotypes, with a flexible helix in residues 3-11 and an alpha helix in residues 12-21. [10] A subsequent implication is that the carboxy-terminal domain – which is also home to the proteasome region of NS2 – are not important in particle production. This theory is corroborated by evidence that mutations in the NS2 protease region do not effect virus production. [9] [10]

Additional research shows that SN2 is involved in HPV particle production. It has been determined that the substitution of one highly conserved NS2 residue, Ser-168, with either Alanine or Glycine results in impaired virus production but not impaired RNA replication. [12] Impairment or elimination of particle production was determined via the number of infectious HPV particles released by transfected cells post-genome mutation. This result further demonstrates that NS2 is critical for viral assembly but not viral RNA replication (which is, however, influenced by cleavage of the NS2/NS3 junction as discussed previously). Furthermore, that same study theorized that the mutation of Ser-168 affects viral assembly in terms of release: assembled NS2 mutants were unable to exit the cell (and were thus not infectious), suggesting that NS2’s importance lies in the very late stages of assembly. [12]

Role in the inhibition of apoptosis

NS2 is an inhibitor of liver cell apoptosis. The viral protein interacts with CIDE-B, a liver-specific pro-apoptotic protein whose carboxy-terminal killing domain induces cell death activity. [13] The binding specificity is strong enough to counteract CIDE-B’s induced release of mitochondrial cytochrome c, as demonstrated by single deletion mutations that result in a loss of interference. This activity has been interpreted as an important strategy for the survival of HCV in host cells. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Interferon</span> Signaling proteins released by host cells in response to the presence of pathogens

Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.

<span class="mw-page-title-main">Hepatitis C virus</span> Species of virus

The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.

<i>Dengue virus</i> Species of virus

Dengue virus (DENV) is the cause of dengue fever. It is a mosquito-borne, single positive-stranded RNA virus of the family Flaviviridae; genus Flavivirus. Four serotypes of the virus have been found, and a reported fifth has yet to be confirmed, all of which can cause the full spectrum of disease. Nevertheless, scientists' understanding of dengue virus may be simplistic as, rather than distinct antigenic groups, a continuum appears to exist. This same study identified 47 strains of dengue virus. Additionally, coinfection with and lack of rapid tests for Zika virus and chikungunya complicate matters in real-world infections.

<span class="mw-page-title-main">Viral protein</span>

A viral protein is both a component and a product of a virus. Viral proteins are grouped according to their functions, and groups of viral proteins include structural proteins, nonstructural proteins, regulatory proteins, and accessory proteins. Viruses are non-living and do not have the means to reproduce on their own, instead depending on their host cell's resources in order to reproduce. Thus, viruses do not code for many of their own viral proteins, and instead use the host cell's machinery to produce the viral proteins they require for replication.

<span class="mw-page-title-main">Oncovirus</span> Viruses that can cause cancer

An oncovirus or oncogenic virus is a virus that can cause cancer. This term originated from studies of acutely transforming retroviruses in the 1950–60s, when the term "oncornaviruses" was used to denote their RNA virus origin. With the letters "RNA" removed, it now refers to any virus with a DNA or RNA genome causing cancer and is synonymous with "tumor virus" or "cancer virus". The vast majority of human and animal viruses do not cause cancer, probably because of longstanding co-evolution between the virus and its host. Oncoviruses have been important not only in epidemiology, but also in investigations of cell cycle control mechanisms such as the retinoblastoma protein.

<span class="mw-page-title-main">M2 proton channel</span>

The Matrix-2 (M2) protein is a proton-selective viroporin, integral in the viral envelope of the influenza A virus. The channel itself is a homotetramer, where the units are helices stabilized by two disulfide bonds, and is activated by low pH. The M2 protein is encoded on the seventh RNA segment together with the M1 protein. Proton conductance by the M2 protein in influenza A is essential for viral replication.

The NS1 influenza protein (NS1) is a viral nonstructural protein encoded by the NS gene segments of type A, B and C influenza viruses. Also encoded by this segment is the nuclear export protein (NEP), formally referred to as NS2 protein, which mediates the export of influenza virus ribonucleoprotein (RNP) complexes from the nucleus, where they are assembled.

<span class="mw-page-title-main">RNA-dependent RNA polymerase</span> Enzyme that synthesizes RNA from an RNA template

RNA-dependent RNA polymerase (RdRp) or RNA replicase is an enzyme that catalyzes the replication of RNA from an RNA template. Specifically, it catalyzes synthesis of the RNA strand complementary to a given RNA template. This is in contrast to typical DNA-dependent RNA polymerases, which all organisms use to catalyze the transcription of RNA from a DNA template.

Yizhi Jane Tao is a Chinese biochemist, structural biologist, and professor of biochemistry and cell biology at Rice University in Houston, Texas. Professor Tao led a team of researchers to be the first to map the structure of the influenza A virus nucleoprotein to an atomic level, a feat which circulated widely in the popular press. She was named among the top ten most influential Chinese of 2006 by a consortium of China's leading media outlets including Phoenix Satellite Television, China News Service, Asia Newsweek, and World Journal.

<span class="mw-page-title-main">Mitochondrial antiviral-signaling protein</span> Protein-coding gene in the species Homo sapiens

Mitochondrial antiviral-signaling protein (MAVS) is a protein that is essential for antiviral innate immunity. MAVS is located in the outer membrane of the mitochondria, peroxisomes, and mitochondrial-associated endoplasmic reticulum membrane (MAM). Upon viral infection, a group of cytosolic proteins will detect the presence of the virus and bind to MAVS, thereby activating MAVS. The activation of MAVS leads the virally infected cell to secrete cytokines. This induces an immune response which kills the host's virally infected cells, resulting in clearance of the virus.

<span class="mw-page-title-main">VAPA</span> Protein-coding gene in humans

VAMP-Associated Protein A is a protein that in humans is encoded by the VAPA gene. Together with VAPB and VAPC it forms the VAP protein family. They are integral endoplasmic reticulum membrane proteins of the type II and are ubiquitous among eukaryotes.

NS2-3 protease is an enzyme responsible for proteolytic cleavage between NS2 and NS3, which are non-structural proteins that form part of the HCV virus particle. NS3 protease of hepatitis C virus, on the other hand, is responsible for the cleavage of non-structural protein downstream. Both of these proteases are directly involved in HCV genome replication, that is, during the viral life-cycle that leads to virus multiplication in the host that has been infected by the virus.

<span class="mw-page-title-main">NS3 (HCV)</span>

Nonstructural protein 3 (NS3), also known as p-70, is a viral nonstructural protein that is 70 kDa cleavage product of the hepatitis C virus polyprotein. It acts as a serine protease. C-terminal two-thirds of the protein also acts as helicase and nucleoside triphosphatase. First (N-terminal) 180 aminoacids of NS3 has additional role as cofactor domains for NS2 protein.

<span class="mw-page-title-main">NS5A (hepacivirus)</span>

Nonstructural protein 5A (NS5A) is a zinc-binding and proline-rich hydrophilic phosphoprotein that plays a key role in Hepatitis C virus RNA replication. It appears to be a dimeric form without trans-membrane helices.

A hepatitis C vaccine, a vaccine capable of protecting against the hepatitis C virus (HCV), is not yet available. Although vaccines exist for hepatitis A and hepatitis B, development of an HCV vaccine has presented challenges. No vaccine is currently available, but several vaccines are currently under development.

RIG-I-like receptors are a type of intracellular pattern recognition receptor involved in the recognition of viruses by the innate immune system. RIG-I is the best characterized receptor within the RIG-I like receptor (RLR) family. Together with MDA5 and LGP2, this family of cytoplasmic pattern recognition receptors (PRRs) are sentinels for intracellular viral RNA that is a product of viral infection. The RLR receptors provide frontline defence against viral infections in most tissues.

<span class="mw-page-title-main">Viperin</span>

Radical S-adenosyl methionine domain-containing protein 2 is a protein that in humans is encoded by the RSAD2 gene. RSAD2 is a multifunctional protein in viral processes that is an interferon stimulated gene. It has been reported that viperin could be induced by either IFN-dependent or IFN-independent pathways and certain viruses may use viperin to increase their infectivity.

<span class="mw-page-title-main">Daclatasvir</span> Chemical compound

Daclatasvir, sold under the brand name Daklinza, is an antiviral medication used in combination with other medications to treat hepatitis C (HCV). The other medications used in combination include sofosbuvir, ribavirin, and interferon, vary depending on the virus type and whether the person has cirrhosis. It is taken by mouth.

<span class="mw-page-title-main">NS5B (Hepacivirus)</span>

Nonstructural protein 5B (NS5B) is a viral protein found in the hepatitis C virus (HCV). It is an RNA-dependent RNA polymerase, having the key function of replicating HCV's viral RNA by using the viral positive RNA strand as a template to catalyze the polymerization of ribonucleoside triphosphates (rNTP) during RNA replication. Several crystal structures of NS5B polymerase in several crystalline forms have been determined based on the same consensus sequence BK. The structure can be represented by a right hand shape with fingers, palm, and thumb. The encircled active site, unique to NS5B, is contained within the palm structure of the protein. Recent studies on NS5B protein genotype 1b strain J4's (HC-J4) structure indicate a presence of an active site where possible control of nucleotide binding occurs and initiation of de-novo RNA synthesis. De-novo adds necessary primers for initiation of RNA replication.

<span class="mw-page-title-main">Discovery and development of NS5A inhibitors</span>

Nonstructural protein 5A (NS5A) inhibitors are direct acting antiviral agents (DAAs) that target viral proteins, and their development was a culmination of increased understanding of the viral life cycle combined with advances in drug discovery technology. However, their mechanism of action is complex and not fully understood. NS5A inhibitors were the focus of much attention when they emerged as a part of the first curative treatment for hepatitis C virus (HCV) infections in 2014. Favorable characteristics have been introduced through varied structural changes, and structural similarities between NS5A inhibitors that are clinically approved are readily apparent. Despite the recent introduction of numerous new antiviral drugs, resistance is still a concern and these inhibitors are therefore always used in combination with other drugs.

References

  1. Erdtmann L, Franck N, Lerat H, et al. (May 2003). "The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis". J. Biol. Chem. 278 (20): 18256–64. doi: 10.1074/jbc.M209732200 . PMID   12595532.
  2. Suarez, David L. (2009). "Influenza A Virus". In David E. Swayne (ed.). Avian Influenza. John Wiley & Sons. p. 3. ISBN   9780813818665.
  3. 1 2 3 Lorenz, Ivo (Aug 2010). "The Hepatitis C Virus Nonstructural Protein 2 (NS2): An Up-and-Coming Antiviral Drug Target". Viruses. 2 (8): 1635–1646. doi: 10.3390/v2081635 . PMC   3185728 . PMID   21994698.
  4. Grakoui, A; McCourt, D W; Wychowski, C; Feinstone, S M; Rice, C M (15 Nov 1993). "A second hepatitis C virus-encoded proteinase". Proc Natl Acad Sci U S A. 90 (22): 10583–10587. Bibcode:1993PNAS...9010583G. doi: 10.1073/pnas.90.22.10583 . PMC   47821 . PMID   8248148.
  5. Schregel, V; Jacobi, S; Penin, F; Tautz, N (31 Mar 2009). "Hepatitis C virus NS2 is a protease stimulated by cofactor domains in NS3". Proc Natl Acad Sci U S A. 106 (13): 5342–5347. Bibcode:2009PNAS..106.5342S. doi: 10.1073/pnas.0810950106 . PMC   2663979 . PMID   19282477.
  6. Blight, Keril; McKeating, Jane; Rice, Charles (Dec 2002). "Highly Permissive Cell Lines for Subgenomic and Genomic Hepatitis C Virus RNA Replication". J Virol. 76 (24): 13001–13014. doi:10.1128/jvi.76.24.13001-13014.2002. PMC   136668 . PMID   12438626.
  7. Lohmann, V; Korner, F; Koch, J; Herian, U; Theilmann, L; Bartenschlager, R (2 Jul 1999). "Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line". Science. 285 (5424): 110–3. doi:10.1126/science.285.5424.110. PMID   10390360.
  8. Welbourn, S; Green, R; Gamache, I; Dandache, S; Lohmann, V; Bartenschlager, R; Meerovitch, K; Pause, A (19 Aug 2005). "Hepatitis C virus NS2/3 processing is required for NS3 stability and viral RNA replication". J Biol Chem. 280 (33): 29604–11. doi: 10.1074/jbc.m505019200 . PMID   15980068.
  9. 1 2 Jones, Christopher; Murray, Catherine; Eastman, Dawnnica; Tassello, Jodie; Rice, Charles (Aug 2007). "Hepatitis C Virus p7 and NS2 Proteins Are Essential for Production of Infectious Virus". J Virol. 81 (16): 8374–8383. doi:10.1128/jvi.00690-07. PMC   1951341 . PMID   17537845.
  10. 1 2 3 Jirasko, Vlastimil; Montserret, Roland; Appel, Nicole; Janvier, Anne; Eustachi, Leah; Brohm, Christiane; Steinmann, Eike; Pietschmann, Thomas; Penin, Francois; Bartenschlager, Ralf (17 Oct 2008). "Structural and Functional Characterization of Nonstructural Protein 2 for Its Role in Hepatitis C Virus Assembly". J Biol Chem. 283 (42): 28546–28562. doi: 10.1074/jbc.m803981200 . PMC   2661407 . PMID   18644781.
  11. Pietschmann, Thomas; Kaul, Artur; Koutsoudakis, George; Shavinskaya, Anna; Kallis, Stephanie; Steinmann, Eike; Abid, Karim; Negro, Francesco; Dreux, Marlene; Cosset, Francois-Loic; Bartenschlager, Ralf (9 May 2006). "Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras". Proc Natl Acad Sci U S A. 103 (19): 7408–7413. Bibcode:2006PNAS..103.7408P. doi: 10.1073/pnas.0504877103 . PMC   1455439 . PMID   16651538.
  12. 1 2 Yi, MinKyung; Ma, Yinghong; Yates, Jeremy; Lemon, Stanley (May 2009). "trans-Complementation of an NS2 Defect in a Late Step in Hepatitis C Virus (HCV) Particle Assembly and Maturation". PLOS Pathog. 5 (5): e1000403. doi:10.1371/journal.ppat.1000403. PMC   2669722 . PMID   19412343.
  13. 1 2 Erdtmann, L; Franck, N; Lerat, H; Le Seyec, J; Gilot, D; Cannie, I; Gripon, P; Hibner, U; Guguen-Guillouzo, C (16 May 2003). "The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis". J Biol Chem. 278 (20): 18256–64. doi: 10.1074/jbc.m209732200 . PMID   12595532.