Nicolosi globular projection

Last updated
Hemispheres on the Nicolosi globular projection. 15deg graticule, 115degW and 65degE central meridians. Imagery is a derivative of NASA's Blue Marble summer month composite with oceans lightened to enhance legibility and contrast. Image created with the Geocart map projection software. Nicolosi globular projections SW.jpg
Hemispheres on the Nicolosi globular projection. 15° graticule, 115°W and 65°E central meridians. Imagery is a derivative of NASA’s Blue Marble summer month composite with oceans lightened to enhance legibility and contrast. Image created with the Geocart map projection software.
Nicolosi globular projection distortion. Deeper tint means more distortion. Neutral color means distortion is balanced between angular deformation and areal inflation. Tissot indicatrix at 15deg intervals. Nicolosi globular projection distortion.jpg
Nicolosi globular projection distortion. Deeper tint means more distortion. Neutral color means distortion is balanced between angular deformation and areal inflation. Tissot indicatrix at 15° intervals.

The Nicolosi globular projection is a polyconic map projection invented about the year 1,000 by the Iranian polymath al-Biruni. As a circular representation of a hemisphere, it is called globular because it evokes a globe. It can only display one hemisphere at a time and so normally appears as a "double hemispheric" presentation in world maps. The projection came into use in the Western world starting in 1660, reaching its most common use in the 19th century. As a "compromise" projection, it preserves no particular properties, instead giving a balance of distortions.

Contents

History

Abū Rayḥān Muḥammad ibn Aḥmad Al-Bīrūnī, who was the foremost Muslim scholar of the Islamic Golden Age, invented the first recorded globular projection for use in celestial maps about the year 1000. [1] Centuries later, as Europe entered its Age of Discovery, the demand for world maps increased rapidly, sparking a vast experimentation with diverse map projections. Globular projections were one category that received early attention, with inventions by Roger Bacon in the 13th century, Petrus Apianus in the 16th century, and also in the 16th century by French Jesuit priest Georges Fournier. In 1660, Giovanni Battista Nicolosi, a Sicilian chaplain in Rome, reinvented Al-Biruni's projection as a modification of Fournier's first projection. It is unlikely Nicolosi knew of al-Biruni's work, and Nicolosi's name is the one usually associated with the projection. [2]

Nicolosi published a set of maps on the projection, one of the world in two hemispheres, and one each for the five known continents. Maps using the same projection appeared occasionally over the ensuing centuries, becoming relatively common in the 19th century as the stereographic projection fell out of common use for this purpose. Use of the Nicolosi projection continued into the early 20th century. It is rarely seen today.

Description

The construction of the Nicolosi globular projection is fairly simple with compasses and straightedge. Given a bounding circle to fit the map into, the poles are placed at the top and bottom of the circle, and the central meridian of the desired hemisphere is drawn as a straight vertical diameter between them. The equator is drawn as a straight horizontal diameter. Each remaining meridian is drawn as a circular arc going through both poles and the equator, such that meridians are equally spaced along the equator. Each remaining parallel is also drawn as a circular arc from the left edge through the central meridian to the right edge of the circle, such that the parallels are equally spaced around the perimeter of the circle and also equally spaced along the central meridian. [3]

A hemisphere shown with the Nicolosi globular projection closely resembles a hemisphere shown with the azimuthal equidistant projection centered on the same point. In both projections of that hemisphere, the meridians are equally spaced along the equator, and the parallels are equally spaced along the central meridian and also equally spaced along the perimeter of the circle. [3]

Nicolosi developed the projection as a drafting technique. Translating that into mathematical formulae yields: [4]

Here, is the latitude, is the longitude, is the central longitude for the hemisphere, and is the radius of the globe to be projected.

In the formula for , the sign takes the sign of , i.e. take the positive root if is positive, or the negative root if is negative.

In the formula for , the sign takes the opposite sign of , i.e. take the positive root if is negative, or the negative root if is positive.

Under certain circumstances, the full formulae fail. Use the following formulae instead:

When ,

When ,

When ,

When ,

See also

Related Research Articles

<span class="mw-page-title-main">Mercator projection</span> Cylindrical conformal map projection

The Mercator projection is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because it is unique in representing north as up and south as down everywhere while preserving local directions and shapes. The map is thereby conformal. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation is very small near the equator but accelerates with increasing latitude to become infinite at the poles. As a result, landmasses such as Greenland, Antarctica, Canada and Russia appear far larger than they actually are relative to landmasses near the equator, such as Central Africa.

<span class="mw-page-title-main">Rhumb line</span> Arc crossing all meridians of longitude at the same angle

In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true north.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Orthographic map projection</span> Azimuthal perspective map projection

Orthographic projection in cartography has been used since antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.

<span class="mw-page-title-main">Mollweide projection</span> Pseudocylindrical equal-area map projection

The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sphere. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.

<span class="mw-page-title-main">Azimuthal equidistant projection</span> Azimuthal equidistant map projection

The azimuthal equidistant projection is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimuth (direction) from the center point. A useful application for this type of projection is a polar projection which shows all meridians as straight, with distances from the pole represented correctly. The flag of the United Nations contains an example of a polar azimuthal equidistant projection.

<span class="mw-page-title-main">Scale (map)</span> Ratio of distance on a map to the corresponding distance on the ground

The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.

<span class="mw-page-title-main">Bottomley projection</span> Pseudoconical equal-area map projection

The Bottomley map projection is a pseudoconical equal area map projection defined as:

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Van der Grinten projection</span> Compromise map projection

The van der Grinten projection is a compromise map projection, which means that it is neither equal-area nor conformal. Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane. Van der Grinten projects the entire Earth into a circle. It largely preserves the familiar shapes of the Mercator projection while modestly reducing Mercator's distortion. Polar regions are subject to extreme distortion. Lines of longitude converge to points at the poles.

<span class="mw-page-title-main">Space-oblique Mercator projection</span> Map projection

Space-oblique Mercator projection is a map projection devised in the 1970s for preparing maps from Earth-survey satellite data. It is a generalization of the oblique Mercator projection that incorporates the time evolution of a given satellite ground track to optimize its representation on the map. The oblique Mercator projection, on the other hand, optimizes for a given geodesic.

<span class="mw-page-title-main">Cassini projection</span> Cylindrical equidistant map projection

The Cassini projection is a map projection first described in an approximate form by César-François Cassini de Thury in 1745. Its precise formulas were found through later analysis by Johann Georg von Soldner around 1810. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

<span class="mw-page-title-main">Tobler hyperelliptical projection</span> Pseudocylindrical equal-area map projection

The Tobler hyperelliptical projection is a family of equal-area pseudocylindrical projections that may be used for world maps. Waldo R. Tobler introduced the construction in 1973 as the hyperelliptical projection, now usually known as the Tobler hyperelliptical projection.

<span class="mw-page-title-main">Wagner VI projection</span> Pseudocylindrical compromise map projection

Wagner VI is a pseudocylindrical whole Earth map projection. Like the Robinson projection, it is a compromise projection, not having any special attributes other than a pleasing, low distortion appearance. Wagner VI is equivalent to the Kavrayskiy VII horizontally elongated by a factor of . This elongation results in proper preservation of shapes near the equator but slightly more distortion overall. The aspect ratio of this projection is 2:1, as formed by the ratio of the equator to the central meridian. This matches the ratio of Earth’s equator to any meridian.

Transverse Mercator projection has many implementations. Louis Krüger in 1912 developed one of his two implementations that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Eckert IV projection</span> Pseudocylindrical equal-area map projection

The Eckert IV projection is an equal-area pseudocylindrical map projection. The length of the polar lines is half that of the equator, and lines of longitude are semiellipses, or portions of ellipses. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. Within each pair, meridians are the same whereas parallels differ. Odd-numbered projections have parallels spaced equally, whereas even-numbered projections have parallels spaced to preserve area. Eckert IV is paired with Eckert III.

<span class="mw-page-title-main">Eckert II projection</span> Pseudocylindrical equal-area map projection

The Eckert II projection is an equal-area pseudocylindrical map projection. In the equatorial aspect the network of longitude and latitude lines consists solely of straight lines, and the outer boundary has the distinctive shape of an elongated hexagon. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. Within each pair, the meridians have the same shape, and the odd-numbered projection has equally spaced parallels, whereas the even-numbered projection has parallels spaced to preserve area. The pair to Eckert II is the Eckert I projection.

<span class="mw-page-title-main">Boggs eumorphic projection</span> Pseudocylindrical equal-area map projection

The Boggs eumorphic projection is a pseudocylindrical, equal-area map projection used for world maps. Normally it is presented with multiple interruptions. Its equal-area property makes it useful for presenting spatial distribution of phenomena. The projection was developed in 1929 by Samuel Whittemore Boggs (1889–1954) to provide an alternative to the Mercator projection for portraying global areal relationships. Boggs was geographer for the United States Department of State from 1924 until his death. The Boggs eumorphic projection has been used occasionally in textbooks and atlases.

<span class="mw-page-title-main">Ortelius oval projection</span> Pseudocylindrical compromise map projection

The Ortelius oval projection is a map projection used for world maps largely in the late 16th and early 17th century. It is neither conformal nor equal-area but instead offers a compromise presentation. It is similar in structure to a pseudocylindrical projection but does not qualify as one because the meridians are not equally spaced along the parallels. The projection's first known use was by Battista Agnese around 1540, although whether the construction method was truly identical to Ortelius's or not is unclear because of crude drafting and printing. The front hemisphere is identical to Petrus Apianus's 1524 globular projection.

<span class="mw-page-title-main">Strebe 1995 projection</span> Pseudoazimuthal equal-area map projection

The Strebe 1995 projection, Strebe projection, Strebe lenticular equal-area projection, or Strebe equal-area polyconic projection is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

References

  1. Keuning, Johannes (1955). "The history of geographical map projections until 1600". Imago Mundi. 12: 20.
  2. Snyder, John P. (1993). Flattening the Earth: Two Thousand Years of Map Projections. Chicago and London: The University of Chicago Press. p. 41. ISBN   0-226-76746-9.
  3. 1 2 John J. G. Savard. "The Globular Projection".
  4. Snyder, John P (1989). An Album of Map Projections. Vol. Professional Paper 1453. Washington, D.C.: U.S. Geological Survey. p. 234.