Nitazoxanide

Last updated
Nitazoxanide
Nitazoxanide.svg
Nitazoxanide-from-xtal-Mercury-3D-balls.png
Clinical data
Trade names Alinia, Nizonide, others
AHFS/Drugs.com Monograph
MedlinePlus a603017
License data
Routes of
administration
By mouth
Drug class Antiprotozoal
Broad-spectrum antiparasitic
Broad-spectrum antiviral
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding Nitazoxanide: ?
Tizoxanide: over 99% [1] [2]
Metabolism Rapidly hydrolyzed to tizoxanide [1]
Metabolites tizoxanide [1] [2]
tizoxanide glucuronide [1] [2]
Elimination half-life 3.5 hours [3]
Excretion Kidney, bile duct, and fecal [1]
Identifiers
  • [2-[(5-Nitro-1,3-thiazol-2-yl)carbamoyl]phenyl]ethanoate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard 100.054.465 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C12H9N3O5S
Molar mass 307.28 g·mol−1
3D model (JSmol)
  • O=C(Nc1ncc(s1)[N+]([O-])=O)c2ccccc2OC(=O)C
  • InChI=1S/C12H9N3O5S/c1-7(16)20-9-5-3-2-4-8(9)11(17)14-12-13-6-10(21-12)15(18)19/h2-6H,1H3,(H,13,14,17) Yes check.svgY
  • Key:YQNQNVDNTFHQSW-UHFFFAOYSA-N Yes check.svgY
   (verify)

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. [4] [5] [6] It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. [1] [6] Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; [4] [7] evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well. [6]

Contents

Chemically, nitazoxanide is the prototype member of the thiazolides, a class of drugs which are synthetic nitrothiazolyl-salicylamide derivatives with antiparasitic and antiviral activity. [4] [6] [8] Tizoxanide, an active metabolite of nitazoxanide in humans, is also an antiparasitic drug of the thiazolide class. [4] [9]

Nitazoxanide tablets were approved as a generic medication in the United States in 2020. [10]

Uses

Nitazoxanide is an effective first-line treatment for infection by Blastocystis species [11] [12] and is indicated for the treatment of infection by Cryptosporidium parvum or Giardia lamblia in immunocompetent adults and children. [1] It is also an effective treatment option for infections caused by other protozoa and helminths (e.g., Entamoeba histolytica , [13] Hymenolepis nana , [14] Ascaris lumbricoides , [15] and Cyclospora cayetanensis [16] ). [7]

Chronic hepatitis B

Nitazoxanide alone has shown preliminary evidence of efficacy in the treatment of chronic hepatitis B over a one-year course of therapy. [17] Nitazoxanide 500 mg twice daily resulted in a decrease in serum HBV DNA in all of 4 HBeAg-positive patients, with undetectable HBV DNA in 2 of 4 patients, loss of HBeAg in 3 patients, and loss of HBsAg in one patient. Seven of 8 HBeAg-negative patients treated with nitazoxanide 500 mg twice daily had undetectable HBV DNA and 2 had loss of HBsAg. Additionally, nitazoxanide monotherapy in one case and nitazoxanide plus adefovir in another case resulted in undetectable HBV DNA, loss of HBeAg and loss of HBsAg. [18] These preliminary studies showed a higher rate of HBsAg loss than any currently licensed therapy for chronic hepatitis B. The similar mechanism of action of interferon and nitazoxanide suggest that stand-alone nitazoxanide therapy or nitazoxanide in concert with nucleos(t)ide analogs have the potential to increase loss of HBsAg, which is the ultimate end-point of therapy. A formal phase 2 study is being planned for 2009. [19]

Chronic hepatitis C

Romark initially decided to focus on the possibility of treating chronic hepatitis C with nitazoxanide. [20] The drug garnered interest from the hepatology community after three phase II clinical trials involving the treatment of hepatitis C with nitazoxanide produced positive results for treatment efficacy and similar tolerability to placebo without any signs of toxicity. [20] A meta-analysis from 2014 concluded that the previous held trials were of low-quality and withheld with a risk of bias. The authors concluded that more randomized trials with low risk of bias are needed to determine if Nitazoxanide can be used as an effective treatment for chronic hepatitis C patients. [21]

Contraindications

Nitazoxanide is contraindicated only in individuals who have experienced a hypersensitivity reaction to nitazoxanide or the inactive ingredients of a nitazoxanide formulation. [1]

Adverse effects

The side effects of nitazoxanide do not significantly differ from a placebo treatment for giardiasis; [1] these symptoms include stomach pain, headache, upset stomach, vomiting, discolored urine, excessive urinating, skin rash, itching, fever, flu syndrome, and others. [1] [22] Nitazoxanide does not appear to cause any significant adverse effects when taken by healthy adults. [1] [2]

Overdose

Information on nitazoxanide overdose is limited. Oral doses of 4 grams in healthy adults do not appear to cause any significant adverse effects. [1] [2] In various animals, the oral LD50 is higher than 10 g/kg. [1]

Interactions

Due to the exceptionally high plasma protein binding (>99.9%) of nitazoxanide's metabolite, tizoxanide, the concurrent use of nitazoxanide with other highly plasma protein-bound drugs with narrow therapeutic indices (e.g., warfarin) increases the risk of drug toxicity. [1] In vitro evidence suggests that nitazoxanide does not affect the CYP450 system. [1]

Pharmacology

Pharmacodynamics

The anti-protozoal activity of nitazoxanide is believed to be due to interference with the pyruvate:ferredoxin oxidoreductase (PFOR) enzyme-dependent electron-transfer reaction that is essential to anaerobic energy metabolism. [1] [8] PFOR inhibition may also contribute to its activity against anaerobic bacteria. [23]

It has also been shown to have activity against influenza A virus in vitro. [24] The mechanism appears to be by selectively blocking the maturation of the viral hemagglutinin at a stage preceding resistance to endoglycosidase H digestion. This impairs hemagglutinin intracellular trafficking and insertion of the protein into the host plasma membrane.[ citation needed ]

Nitazoxanide modulates a variety of other pathways in vitro, including glutathione-S-transferase and glutamate-gated chloride ion channels in nematodes, respiration and other pathways in bacteria and cancer cells, and viral and host transcriptional factors. [23]

Pharmacokinetics

Following oral administration, nitazoxanide is rapidly hydrolyzed to the pharmacologically active metabolite, tizoxanide, which is 99% protein bound. [1] [9] Tizoxanide is then glucuronide conjugated into the active metabolite, tizoxanide glucuronide. [1] Peak plasma concentrations of the metabolites tizoxanide and tizoxanide glucuronide are observed 1–4 hours after oral administration of nitazoxanide, whereas nitazoxanide itself is not detected in blood plasma. [1]

Roughly 23 of an oral dose of nitazoxanide is excreted as its metabolites in feces, while the remainder of the dose excreted in urine. [1] Tizoxanide is excreted in the urine, bile and feces. [1] Tizoxanide glucuronide is excreted in urine and bile. [1]

Chemistry

Nitazoxanide is the prototype member of the thiazolides, which is a drug class of structurally-related broad-spectrum antiparasitic compounds. [4] Nitazoxanide is a light yellow crystalline powder. It is poorly soluble in ethanol and practically insoluble in water.[ citation needed ]

History

Nitazoxanide was originally discovered in the 1980s by Jean-François Rossignol at the Pasteur Institute. Initial studies demonstrated activity versus tapeworms. In vitro studies demonstrated much broader activity. Dr. Rossignol co-founded Romark Laboratories, with the goal of bringing nitazoxanide to market as an anti-parasitic drug. Initial studies in the USA were conducted in collaboration with Unimed Pharmaceuticals, Inc. (Marietta, GA) and focused on development of the drug for treatment of cryptosporidiosis in AIDS. Controlled trials began shortly after the advent of effective anti-retroviral therapies. The trials were abandoned due to poor enrollment and the FDA rejected an application based on uncontrolled studies.[ citation needed ]

Subsequently, Romark launched a series of controlled trials. A placebo-controlled study of nitazoxanide in cryptosporidiosis demonstrated significant clinical improvement in adults and children with mild illness. Among malnourished children in Zambia with chronic cryptosporidiosis, a three-day course of therapy led to clinical and parasitologic improvement and improved survival. In Zambia and in a study conducted in Mexico, nitazoxanide was not successful in the treatment of cryptosporidiosis in advanced infection with human immunodeficiency virus at the doses used. However, it was effective in patients with higher CD4 counts. In treatment of giardiasis, nitazoxanide was superior to placebo and comparable to metronidazole. Nitazoxanide was successful in the treatment of metronidazole-resistant giardiasis. Studies have suggested efficacy in the treatment of cyclosporiasis, isosporiasis, and amebiasis. [25] Recent studies have also found it to be effective against beef tapeworm(Taenia saginata). [18]

Pharmaceutical products

Dosage forms

Nitazoxanide is currently available in two oral dosage forms: a tablet (500 mg) and an oral suspension (100 mg per 5 ml when reconstituted). [1]

An extended release tablet (675 mg) has been used in clinical trials for chronic hepatitis C; however, this form is not currently marketed or available for prescription. [20]

Brand names

Nitazoxanide is sold under the brand names Adonid, Alinia, Allpar, Annita, Celectan, Colufase, Daxon, Dexidex, Diatazox, Kidonax, Mitafar, Nanazoxid, Parazoxanide, Netazox, Niazid, Nitamax, Nitax, Nitaxide, Nitaz, Nizonide, NT-TOX, Pacovanton, Paramix, Toza, and Zox.[ citation needed ]

Research

As of September 2015, nitazoxanide was in phase 3 clinical trials for the treatment influenza due to its inhibitory effect on a broad range of influenza virus subtypes and efficacy against influenza viruses that are resistant to neuraminidase inhibitors like oseltamivir. [6] [26] Nitazoxanide is also being researched as a potential treatment for COVID-19, [27] chronic hepatitis B, chronic hepatitis C, rotavirus and norovirus gastroenteritis. [6]

Related Research Articles

<span class="mw-page-title-main">Hepatitis</span> Inflammation of the liver

Hepatitis is inflammation of the liver tissue. Some people or animals with hepatitis have no symptoms, whereas others develop yellow discoloration of the skin and whites of the eyes (jaundice), poor appetite, vomiting, tiredness, abdominal pain, and diarrhea. Hepatitis is acute if it resolves within six months, and chronic if it lasts longer than six months. Acute hepatitis can resolve on its own, progress to chronic hepatitis, or (rarely) result in acute liver failure. Chronic hepatitis may progress to scarring of the liver (cirrhosis), liver failure, and liver cancer.

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<span class="mw-page-title-main">Hepatitis C</span> Human viral infection

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver; it is a type of viral hepatitis. During the initial infection period, people often have mild or no symptoms. Early symptoms can include fever, dark urine, abdominal pain, and yellow tinged skin. The virus persists in the liver, becoming chronic, in about 70% of those initially infected. Early on, chronic infection typically has no symptoms. Over many years however, it often leads to liver disease and occasionally cirrhosis. In some cases, those with cirrhosis will develop serious complications such as liver failure, liver cancer, or dilated blood vessels in the esophagus and stomach.

<span class="mw-page-title-main">Ribavirin</span> Antiviral medication

Ribavirin, also known as tribavirin, is an antiviral medication used to treat RSV infection, hepatitis C and some viral hemorrhagic fevers. For hepatitis C, it is used in combination with other medications such as simeprevir, sofosbuvir, peginterferon alfa-2b or peginterferon alfa-2a. Among the viral hemorrhagic fevers it is used for Lassa fever, Crimean–Congo hemorrhagic fever, and Hantavirus infection but should not be used for Ebola or Marburg infections. Ribavirin is taken by mouth or inhaled.

<span class="mw-page-title-main">Viral hepatitis</span> Liver inflammation from a viral infection

Viral hepatitis is liver inflammation due to a viral infection. It may present in acute form as a recent infection with relatively rapid onset, or in chronic form, typically progressing from a long-lasting asymptomatic condition up to a decompensated hepatic disease and hepatocellular carcinoma (HCC).

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is an antiviral medication for the treatment of influenza and COVID infections used in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

Antiparasitics are a class of medications which are indicated for the treatment of parasitic diseases, such as those caused by helminths, amoeba, ectoparasites, parasitic fungi, and protozoa, among others. Antiparasitics target the parasitic agents of the infections by destroying them or inhibiting their growth; they are usually effective against a limited number of parasites within a particular class. Antiparasitics are one of the antimicrobial drugs which include antibiotics that target bacteria, and antifungals that target fungi. They may be administered orally, intravenously or topically. Overuse or misuse of antiparasitics can lead to the development of antimicrobial resistance.

<span class="mw-page-title-main">Pyruvate synthase</span> Class of enzymes

In enzymology, a pyruvate synthase is an enzyme that catalyzes the interconversion of pyruvate and acetyl-CoA. It is also called pyruvate:ferredoxin oxidoreductase (PFOR).

<span class="mw-page-title-main">Telbivudine</span> Chemical compound

Telbivudine is an antiviral drug used in the treatment of hepatitis B infection. It is marketed by Swiss pharmaceutical company Novartis under the trade names Sebivo and Tyzeka. Clinical trials have shown it to be significantly more effective than lamivudine or adefovir, and less likely to cause resistance. However, HBV signature resistance mutation M204I or L180M+M204V have been associated with Telbivudine resistance.

<span class="mw-page-title-main">Hepatitis B</span> Human viral infection

Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV) that affects the liver; it is a type of viral hepatitis. It can cause both acute and chronic infection.

<span class="mw-page-title-main">Telaprevir</span> Chemical compound

Telaprevir (VX-950), marketed under the brand names Incivek and Incivo, is a pharmaceutical drug for the treatment of hepatitis C co-developed by Vertex Pharmaceuticals and Johnson & Johnson. It is a member of a class of antiviral drugs known as protease inhibitors. Specifically, telaprevir inhibits the hepatitis C viral enzyme NS3/4A serine protease. Telaprevir is only indicated for use against hepatitis C genotype 1 viral infections and has not been proven to be safe or effective when used for other genotypes of the virus. The standard therapy of pegylated interferon and ribavirin is less effective than telaprevir in those with genotype 1.

The central nervous system (CNS) controls most of the functions of the body and mind. It comprises the brain, spinal cord and the nerve fibers that branch off to all parts of the body. The CNS viral diseases are caused by viruses that attack the CNS. Existing and emerging viral CNS infections are major sources of human morbidity and mortality.

<span class="mw-page-title-main">Tizoxanide</span> Chemical compound

Tizoxanide, also known as desacetyl-nitazoxanide, is a thiazolide and an antiparasitic agent that occurs as a metabolite of nitazoxanide in humans through hydrolysis. Tizoxanide may undergo further metabolism via conjugation into tizoxanide glucuronide.

Jean-François Rossignol is a French scientist, a medicinal chemist and a physician, born in France on September 5, 1943. He was educated at the University of Paris, later specializing in tropical medicine. He then pursued a career in academia and in the pharmaceutical industry discovering and developing new drugs for the treatment of parasitic diseases such as halofantrine in the treatment of multidrug resistant Falciparum malaria or albendazole and nitazoxanide for the treatment of intestinal protozoan and helminthic infections. In 1993, he co-created his own pharmaceutical company, Romark Laboratories, L.C., to develop his own invention nitazoxanide, the first of the thiazolides. At Romark, he is the Chairman of the Board of Directors of the company and its Chief Science Officer. Following the discovery of the antiviral activity of the thiazolides Rossignol went to Stanford University in California to study interferon stimulated gene pathways and chronic viral hepatitis under Prof. Emmet Keeffe and Prof. Jeffery Glenn. It was in the Glenn laboratory that the mechanism of antiviral activity of nitazoxanide against the hepatitis C virus was discovered.

<span class="mw-page-title-main">Favipiravir</span> Experimental antiviral drug with potential activity against RNA viruses

Favipiravir, sold under the brand name Avigan among others, is an antiviral medication used to treat influenza in Japan. It is also being studied to treat a number of other viral infections, including SARS-CoV-2. Like the experimental antiviral drugs T-1105 and T-1106, it is a pyrazinecarboxamide derivative.

<span class="mw-page-title-main">Galidesivir</span> Antiviral drug

Galidesivir is an antiviral drug, an adenosine analog. It was developed by BioCryst Pharmaceuticals with funding from NIAID, originally intended as a treatment for hepatitis C, but subsequently developed as a potential treatment for deadly filovirus infections such as Ebola virus disease and Marburg virus disease, as well as Zika virus. Currently, galidesivir is under phase 1 human trial in Brazil for coronavirus.

<span class="mw-page-title-main">Beclabuvir</span> Chemical compound

Beclabuvir is an antiviral drug for the treatment of hepatitis C virus (HCV) infection that has been studied in clinical trials. In February 2017, Bristol-Myers Squibb began sponsoring a post-marketing trial of beclabuvir, in combination with asunaprevir and daclatasvir, to study the combination's safety profile with regard to liver function. From February 2014 to November 2016, a phase II clinical trial was conducted on the combination of asunaprevir/daclatasvir/beclabuvir on patients infected with both HIV and HCV. Furthermore, a recent meta-analysis of six published six clinical trials showed high response rates in HCV genotype 1-infected patients treated with daclatasvir, asunaprevir, and beclabuvir irrespective of ribavirin use, prior interferon-based therapy, or restriction on noncirrhotic patients, IL28B genotype, or baseline resistance-associated variants

<span class="mw-page-title-main">Riamilovir</span> Chemical compound

Riamilovir is a broad-spectrum antiviral drug developed in Russia through a joint effort of Ural Federal University, Russian Academy of Sciences, Ural Center for Biopharma Technologies and Medsintez Pharmaceutical. It has a novel triazolotriazine core, which represents a new structural class of non-nucleoside antiviral drugs.

<span class="mw-page-title-main">Mericitabine</span> Chemical compound

Mericitabine (RG-7128) is an antiviral drug, a deoxycytidine analog. It was developed as a treatment for hepatitis C, acting as a NS5B RNA polymerase inhibitor, but while it showed a good safety profile in clinical trials, it was not sufficiently effective to be used as a stand-alone agent. However mericitabine has been shown to boost the efficacy of other antiviral drugs when used alongside them, and as most modern treatment regimens for hepatitis C use a combination therapy of several antiviral drugs, clinical trials have continued to see if it can form a part of a clinically useful drug treatment program.

<span class="mw-page-title-main">Molnupiravir</span> Antiviral medication

Molnupiravir, sold under the brand name Lagevrio, is an antiviral medication that inhibits the replication of certain RNA viruses. It is used to treat COVID‑19 in those infected by SARS-CoV-2. It is taken by mouth.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 "Alinia- nitazoxanide tablet Alinia- nitazoxanide powder, for suspension". DailyMed. Retrieved 13 February 2021.
  2. 1 2 3 4 5 Stockis A, Allemon AM, De Bruyn S, Gengler C (May 2002). "Nitazoxanide pharmacokinetics and tolerability in man using single ascending oral doses". International Journal of Clinical Pharmacology and Therapeutics. 40 (5): 213–220. doi:10.5414/cpp40213. PMID   12051573.
  3. "Nitazoxanide". PubChem. National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 3 January 2016.
  4. 1 2 3 4 5 Di Santo N, Ehrisman J (September 2013). "Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose?". Cancers. 5 (3): 1163–1176. doi: 10.3390/cancers5031163 . PMC   3795384 . PMID   24202339. Nitazoxanide [NTZ: 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide] is a thiazolide antiparasitic agent with excellent activity against a wide variety of protozoa and helminths.  ... Nitazoxanide (NTZ) is a main compound of a class of broad-spectrum anti-parasitic compounds named thiazolides. It is composed of a nitrothiazole-ring and a salicylic acid moiety which are linked together by an amide bond ... NTZ is generally well tolerated, and no significant adverse events have been noted in human trials [13]. ... In vitro, NTZ and tizoxanide function against a wide range of organisms, including the protozoal species Blastocystis hominis, C. parvum, Entamoeba histolytica, G. lamblia and Trichomonas vaginalis [13]
  5. White CA (February 2004). "Nitazoxanide: a new broad spectrum antiparasitic agent". Expert Review of Anti-Infective Therapy. 2 (1): 43–49. doi:10.1586/14787210.2.1.43. PMID   15482170. S2CID   219184877.
  6. 1 2 3 4 5 6 Rossignol JF (October 2014). "Nitazoxanide: a first-in-class broad-spectrum antiviral agent". Antiviral Research. 110: 94–103. doi: 10.1016/j.antiviral.2014.07.014 . PMC   7113776 . PMID   25108173. Originally developed and commercialized as an antiprotozoal agent, nitazoxanide was later identified as a first-in-class broad-spectrum antiviral drug and has been repurposed for the treatment of influenza. ... From a chemical perspective, nitazoxanide is the scaffold for a new class of drugs called thiazolides. These small-molecule drugs target host-regulated processes involved in viral replication. ... A new dosage formulation of nitazoxanide is presently undergoing global Phase 3 clinical development for the treatment of influenza. Nitazoxanide inhibits a broad range of influenza A and B viruses including influenza A(pH1N1) and the avian A(H7N9) as well as viruses that are resistant to neuraminidase inhibitors. ... Nitazoxanide also inhibits the replication of a broad range of other RNA and DNA viruses including respiratory syncytial virus, parainfluenza, coronavirus, rotavirus, norovirus, hepatitis B, hepatitis C, dengue, yellow fever, Japanese encephalitis virus and human immunodeficiency virus in cell culture assays. Clinical trials have indicated a potential role for thiazolides in treating rotavirus and norovirus gastroenteritis and chronic hepatitis B and chronic hepatitis C. Ongoing and future clinical development is focused on viral respiratory infections, viral gastroenteritis and emerging infections such as dengue fever.
  7. 1 2 Anderson VR, Curran MP (2007). "Nitazoxanide: a review of its use in the treatment of gastrointestinal infections". Drugs. 67 (13): 1947–1967. doi:10.2165/00003495-200767130-00015. PMID   17722965. S2CID   260860340. Nitazoxanide is effective in the treatment of protozoal and helminthic infections ... Nitazoxanide is a first-line choice for the treatment of illness caused by C. parvum or G. lamblia infection in immunocompetent adults and children, and is an option to be considered in the treatment of illnesses caused by other protozoa and/or helminths.
  8. 1 2 Sisson G, Goodwin A, Raudonikiene A, Hughes NJ, Mukhopadhyay AK, Berg DE, Hoffman PS (July 2002). "Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori". Antimicrobial Agents and Chemotherapy. 46 (7): 2116–2123. doi:10.1128/aac.46.7.2116-2123.2002. PMC   127316 . PMID   12069963. Nitazoxanide (NTZ) is a redox-active nitrothiazolyl-salicylamide
  9. 1 2 Korba BE, Montero AB, Farrar K, Gaye K, Mukerjee S, Ayers MS, Rossignol JF (January 2008). "Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication". Antiviral Research. 77 (1): 56–63. doi:10.1016/j.antiviral.2007.08.005. PMID   17888524.
  10. "First Generic Drug Approvals". U.S. Food and Drug Administration (FDA). Retrieved 13 February 2021.
  11. "Blastocystis: Resources for Health Professionals". United States Centers for Disease Control and Prevention. 2017-05-02. Retrieved 4 January 2016.
  12. Roberts T, Stark D, Harkness J, Ellis J (May 2014). "Update on the pathogenic potential and treatment options for Blastocystis sp". Gut Pathogens. 6: 17. doi: 10.1186/1757-4749-6-17 . PMC   4039988 . PMID   24883113. Blastocystis is one of the most common intestinal protists of humans. ... A recent study showed that 100% of people from low socio-economic villages in Senegal were infected with Blastocystis sp. suggesting that transmission was increased due to poor hygiene sanitation, close contact with domestic animals and livestock, and water supply directly from well and river [10]. ...
  13. Muñoz P, Valerio M, Eworo A, Bouza E (December 2011). "Parasitic infections in solid-organ transplant recipients". Current Opinion in Organ Transplantation. 16 (6): 565–575. doi:10.1097/MOT.0b013e32834cdbb0. PMID   22027588. S2CID   23861504. Nitazoxanide: intestinal amoebiasis: 500 mg po bid x 3 days
  14. "Hymenolepiasis: Resources for Health Professionals". United States Centers for Disease Control and Prevention. 2017-05-02. Retrieved 4 January 2016.
  15. Hagel I, Giusti T (October 2010). "Ascaris lumbricoides: an overview of therapeutic targets". Infectious Disorders Drug Targets. 10 (5): 349–367. doi:10.2174/187152610793180876. PMID   20701574. S2CID   15403331. new anthelmintic alternatives such as tribendimidine and Nitazoxanide have proved to be safe and effective against A. lumbricoides and other soil-transmitted helminthiases in human trials.
  16. Shoff WH (5 October 2015). Chandrasekar PH, Talavera F, King JW (eds.). "Cyclospora Medication". Medscape. WebMD. Retrieved 11 January 2016. Nitazoxanide, a 5-nitrothiazole derivative with broad-spectrum activity against helminths and protozoans, has been shown to be effective against C cayetanensis, with an efficacy 87% by the third dose (first, 71%; second 75%). Three percent of patients had minor side effects.
  17. Teran CG, Teran-Escalera CN, Villarroel P (July 2009). "Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children". International Journal of Infectious Diseases. 13 (4): 518–523. doi: 10.1016/j.ijid.2008.09.014 . PMID   19070525.
  18. 1 2 Lateef M, Zargar SA, Khan AR, Nazir M, Shoukat A (January 2008). "Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide". International Journal of Infectious Diseases. 12 (1): 80–82. doi: 10.1016/j.ijid.2007.04.017 . PMID   17962058.
  19. World Journal of Gastroenterology 2009 April 21, Emmet B Keeffe MD, Professor, Jean-François Rossignol The Romark Institute for Medical Research, Tampa
  20. 1 2 3 Keeffe EB, Rossignol JF (April 2009). "Treatment of chronic viral hepatitis with nitazoxanide and second generation thiazolides". World Journal of Gastroenterology. 15 (15): 1805–1808. doi: 10.3748/wjg.15.1805 . PMC   2670405 . PMID   19370775.
  21. Nikolova K, Gluud C, Grevstad B, Jakobsen JC (April 2014). "Nitazoxanide for chronic hepatitis C". The Cochrane Database of Systematic Reviews (4): CD009182. doi:10.1002/14651858.CD009182.pub2. PMID   24706397.
  22. "Nitazoxanide". MedlinePlus. Retrieved 9 April 2014.
  23. 1 2 Shakya A, Bhat HR, Ghosh SK (2018). "Update on Nitazoxanide: A Multifunctional Chemotherapeutic Agent". Current Drug Discovery Technologies. 15 (3): 201–213. doi:10.2174/1570163814666170727130003. PMID   28748751. S2CID   19244282.
  24. Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG (October 2009). "Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level". The Journal of Biological Chemistry. 284 (43): 29798–29808. doi: 10.1074/jbc.M109.029470 . PMC   2785610 . PMID   19638339.
  25. White AC (April 2003). "Nitazoxanide: an important advance in anti-parasitic therapy". The American Journal of Tropical Medicine and Hygiene. 68 (4): 382–383. doi: 10.4269/ajtmh.2003.68.382 . PMID   12875283.
  26. Li TC, Chan MC, Lee N (September 2015). "Clinical Implications of Antiviral Resistance in Influenza". Viruses. 7 (9): 4929–4944. doi: 10.3390/v7092850 . PMC   4584294 . PMID   26389935. Oral nitazoxanide is an available, approved antiparasitic agent (e.g., against cryptosporidium, giardia) with established safety profiles. Recently, it has been shown (together with its active metabolite tizoxanide) to possess anti-influenza activity by blocking haemagglutinin maturation/trafficking, and acting as an interferon-inducer [97]. ... A large, multicenter, Phase 3 randomized-controlled trial comparing nitazoxanide, oseltamivir, and their combination in uncomplicated influenza is currently underway (NCT01610245).
    Figure 1: Molecular targets and potential antiviral treatments against influenza virus infection
  27. Pepperrell T, Pilkington V, Owen A, Wang J, Hill AM (April 2020). "Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19". Journal of Virus Eradication. 6 (2): 52–60. doi: 10.1016/S2055-6640(20)30017-0 . PMC   7332204 . PMID   32405422.

Further reading