PKS 1144-379

Last updated
PKS 1144-379
DESI Legacy Surveys of PKS 1144-379.jpg
PKS 1144-379 seen by DESI Legacy Surveys
Observation data (J2000.0 epoch)
Constellation Centaurus
Right ascension 11h 47m 01.37s
Declination -38d 12m 11.02s
Redshift 1.049000
Heliocentric radial velocity 314,482 km/s
Distance 7.709 Gly (light travel time distance)
Apparent magnitude  (V)0.266
Apparent magnitude  (B)0.352
Surface brightness 16.2
Characteristics
Type Opt. var; FSRQ, BL Lac
Notable features Quasar with high variability
Other designations
WMAP 169, PGC 2826879, IRAS F11445-3755, NVSS J114701-381211, RFC J1147-3812, IRCF J114701.3-381211, MRC 1144-379, PG 1144-379, SUMSS J114701-381210

PKS 1144-379 also known as PKS B1144-379, is a quasar located in the constellation of Centaurus. At the redshift of 1.048, [1] the object is located nearly 8 billion light-years from Earth. [2]

Contents

Characteristics

PKS 1144-379 is classified as a flat-spectrum radio quasar (FSRQ), brighter than S4.8 GHz=65 mJy. [3] [4] It has an active galactic nucleus with high optical polarization. [5] [6] As monitored at 13 cm and 6 cm by researchers over three years, which they found it as a star-like object, PKS 1144-379 has been identified as BL lac object [7] of Mv ≈16.2, due to its variability in optical, infrared, and radio wavelengths. [8] [1] Such BL Lac objects like PKS 1144-379 are rare active galactic nuclei class, characterized by all frequencies, and absence of emission lines. [9]

PKS 1144-379 is also radio variable as observed in the Parkes 2700 MHz survey by researchers working at Parkes Observatory. [10] The quasar is dominated by its bright compact radio core, but according to maps that is made with a high dynamic range, it shows an extended structure. PKS 1144-379 also has a luminosity above both FR I/FR II limit ~ 1032 erg s−1 Hz−1 at 5 GHz [11] and such also classfied as a blazar, [12] [13] a type of active galaxy that is producing radiation, observed at wavelengths from radio to gamma rays. [14]

Observation of PKS 1144-379

PKS 1144-379 is known to be variable for its long and short-term flux density variability at centimeter wavelengths. Some of the first observations of PKS 1144−379 showed variability at frequencies of 5 GHz. The flux density is shown to increase from 0.9 Jy to 1.6 Jy between December 1970 and February, 1971. [15] [16] In September of the same year, it had increased again to 2.22 Jy. [17] Between May and August 1994, the flux density of PKS 1144−379 at 4.8GHz dropped by 17%, and subsequently 9% at 8.6 GHz. [18]

In June 1996, PKS 1144-379 underwent optical variation again. Over the next 2.5 days, the survey data shows the quasar had a 33% change at 4.8 GHz. Subsequent data showed more variations in PKS 1144–379 with maximum of 8.6 GHz with over three hours of irregular change of 20%. This is strongly correlated with 10% change at 4.8 GHz. [19] From the results studying the variability behavior of PKS 1144–379, researchers found the optical variation is 1.92 mag. This is smaller than those, ~ 3.5 mag in its infrared region. [20]

Using the Ceduna 30-m radio telescope at a frequency of 6.7 GHz and very long baseline interferometry (VLBI) data at 8.6 GHz at the University of Tasmania in Australia, researchers investigated the evolution of PKS 1144–379. They found the variability time-scales associated with two flares detected in PKS 1144-379 between November 2005 and August 2008 were found to derive from long-term variations in total flux density as monitored by Ceduna between 2003 and 2011. Moreover, a kinematic study of the parsec-scale jet of PKS 1144-379 was also performed through VLBI data obtained between 1997 and 2018, which they observe quasi-periodic flarings of ~3-4 yr. Over the 20-yr interval, they found the average jet position angle was ~150°. [21] The core component of PKS 1144-379 is found to be compacted, which its angular size varied between the ranges of 5.65-15.90 Чas estimating to be 0.05-0.13 pc. [22]

Researchers assumed the variations observed in PKS 1144–379, are due to scintillation. The variations are 6.2 ×1012 K at 4.9 GHz with approximately 10% of total flux density found in the scintillating component. Given the results, PKS 1144-379 has a high modulation index in the range of 5–18% [22] combined with the 1.2 day characteristic timescale (corresponding to a peak-to-peak period of 7.7 days), making it the most extreme bright scintillators identified in history. [23] According to observations by Fermi, PKS 1144-379 has a column dissipation radius of 64.5 x 1015 cm (430) RS with an accretion disc luminosity of 1045 erg s−1 3 x (0.04) LEdd. The jet power as the form of radiation for the quasar has a log probability of 44.92 log Pr with Poynting flux of 44.49 log PB while the bulk motion of electrons and protons is found to be 44.34 log Pe and 46.41 log Pp. From the results, PKS 1144-379 has an estimated black hole mass of 108–109 M⊙, whom researchers noted. [24]

Related Research Articles

<span class="mw-page-title-main">Blazar</span> Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets appear to exhibit superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

<span class="mw-page-title-main">BL Lacertae object</span> Type of active galactic nucleus

A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical polarization. Because of these properties, the prototype of the class was originally thought to be a variable star. When compared to the more luminous active nuclei (quasars) with strong emission lines, BL Lac objects have spectra dominated by a relatively featureless non-thermal emission continuum over the entire electromagnetic range. This lack of spectral lines historically hindered identification of the nature and distance of such objects.

The Whole Earth Blazar Telescope (WEBT) is an international consortium of astronomers created in 1997, with the aim to study a particular category of Active Galactic Nuclei (AGN) called blazars, which are characterized by strong and fast brightness variability, on time scales down to hours or less.

PKS 1353−341, also known as LEDA 88936 is a quasar located in the southern constellation Centaurus. It has an apparent magnitude of 18.5, making it only visible in powerful telescopes. Based on the object's luminosity, it is estimated to be 3.7 billion light years distant from the Solar System. It is receding from the Milky Way with a heliocentric radial velocity of 59,531 km/s

<span class="mw-page-title-main">AP Librae</span> Active galactic nucleus in the constellation Libra

AP Librae is a BL Lacertae object located at a distance of 700 million light years in the southern constellation of Libra. In the visual band it is one of the most active blazars known. AP Lib is surrounded by an extended source with a spectrum characteristic of a red-shifted giant elliptical galaxy. The derived visual magnitude of this region is 15.0, and it follows a radially decreasing brightness that is characteristic of an elliptical. Seven fainter galaxies are visible within an angular radius of 9′, suggesting it is the brightest member of a galactic cluster.

<span class="mw-page-title-main">PKS 2131-021</span> Quasar in the constellation Aquarius

PKS 2131-021 is quasar and a BL Lacerate object, producing an astrophysical jet. lt is located in the constellation Aquarius and classified as a blazar, a type of active galactic nucleus whose relativistic jet points in the direction towards Earth.

<span class="mw-page-title-main">IC 4516</span> Galaxy located in Boötes

IC 4516 is a type E elliptical galaxy located in Boötes. Its redshift is 0.045618 which corresponds IC 4516 to be located 667 million light-years from Earth. The galaxy was discovered by Lewis Swift on June 2, 1898, which was his last discovery after spending half a century observing astronomical objects, starting with the observation of the Great Comet in 1843.

<span class="mw-page-title-main">IRAS 09104+4109</span> Galaxy in the constellation Lynx

IRAS 09104+4109 is a galaxy located in the constellation Lynx. With a redshift of 0.440797, the light travel time for this galaxy, corresponds to 4.8 billion light-years from Earth. It is the brightest cluster galaxy in CDGS 25, also known as WHL J091345.5+405628 and a notable, unique ultraluminous infrared galaxy.

<span class="mw-page-title-main">4C +71.07</span> Quasar in the constellation Ursa Major

4C +71.07 known as S5 0836+71, is a quasar located in the constellation Ursa Major. Based on its high redshift, the object is located 10.7 billion light-years away from Earth and such, classified as a blazar with a flat-spectrum radio source and features a radio jet.

<span class="mw-page-title-main">PKS 0537-286</span> Quasar in the constellation Columba

PKS 0537-286, also known as QSO B0537-286, is a quasar located in the constellation Columba. With a redshift of 3.104, the object is located 11.4 billion light years away and belongs to the flat spectrum radio quasar blazar subclass (FSQR). It is one of the most luminous known high-redshift quasars.

<span class="mw-page-title-main">PKS 0438-436</span> Quasar in the constellation Caelum

PKS 0438-436, also known as PKS J0440-4333, is a quasar located in constellation Caelum. With a high redshift of 2.86, the object is located 11.2 billion light-years from Earth and is classified as a blazar due to its flat-spectrum radio source, (in terms of the flux density as with α < 0.5 and its optical polarization.

<span class="mw-page-title-main">PKS 2215+020</span> Quasar in the constellation Aquarius

PKS 2215+020, known as PMN J2217+0220, is a quasar located in the Aquarius constellation. Its redshift is 3.570000, meaning the object is located 11.6 billion light-years away from Earth. It is classified as a flat spectrum radio source quasar.

<span class="mw-page-title-main">PKS 2126-158</span> Quasar in the constellation Capricornus

PKS 2126-158, also known as PKS 2126-15, is a quasar located in Capricornus. It has a redshift of 3.268000, which corresponds to the distance of 11.5 billion light years. It is classified as a gigahertz peaked-spectrum quasar (GPS) with a flat-spectrum radio source and a blazar, a type of active galaxy shooting an astrophysical jet towards Earth.

<span class="mw-page-title-main">PKS 0226-559</span>

PKS 0226-559 known as PMN J0228-5546 is a quasar located in the constellation Horologium. At the redshift of 2.464, the object is roughly 10.6 billion light-years from Earth.

<span class="mw-page-title-main">PKS 0451-28</span> Quasar in the constellation Caelum

PKS 0451-28, also known as MRC 0451-282, is a quasar located in the constellation of Caelum. Its redshift is 2.55, estimating the object to be located nearly 10.8 billion light-years away from Earth.

<span class="mw-page-title-main">PKS 1345+125</span>

PKS 1345+125 known as PKS 1345+12 and 4C +12.50, is an ultraluminous infrared galaxy (ULIG) with an active galactic nucleus, located in the constellation Boötes. With a redshift of 0.121740, the galaxy is located 1.7 billion light-years from Earth.

<span class="mw-page-title-main">PKS 1402-012</span> Quasar in the constellation of Virgo

PKS 1402-012, also known as UM 632, is a quasar located in the constellation of Virgo. With a redshift of 2.51, the object is located 10.7 billion light-years from Earth.

<span class="mw-page-title-main">4C +03.10</span> Quasar in the constellation Orion

4C +03.10 also known as PKS 0505+03 and OG +008, is a quasar located in the constellation of Orion. At a redshift of 2.46, the object is located 10.6 billion light-years away from Earth.

<span class="mw-page-title-main">PKS 1402+044</span> Quasar in the constellation of Virgo

PKS 1402+044 is a quasar located in the constellation of Virgo. It has a redshift of 3.207, estimating the object to be located 11.3 billion light-years away from Earth.

<span class="mw-page-title-main">PKS 0805-07</span> Quasar in the constellation of Monoceros

PKS 0805-07 also known as PMN J0808-0751 and 4FGL J0808.2-0751, is a quasar located in the constellation of Monoceros. With a redshift of 1.83, light has taken at least 10 billion light-years to reach Earth.

References

  1. 1 2 Stickel, M.; Fried, J. W.; Kuehr, H. (1989-10-01). "Optical spectroscopy of 1 Jy BL Lacertae objects and flat spectrum radio sources". Astronomy and Astrophysics Supplement Series. 80: 103–114. Bibcode:1989A&AS...80..103S. ISSN   0365-0138.
  2. "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-08.
  3. Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N. (2007-07-01). "CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources". The Astrophysical Journal Supplement Series. 171 (1): 61–71. arXiv: astro-ph/0702346 . Bibcode:2007ApJS..171...61H. doi:10.1086/513742. ISSN   0067-0049.
  4. Korsmeier, Michael; Pinetti, Elena; Negro, Michela; Regis, Marco; Fornengo, Nicolao (2022-07-01). "Flat spectrum radio quasars and BL Lacs dominate the anisotropy of the unresolved gamma-ray background". The Astrophysical Journal. 933 (2): 221. arXiv: 2201.02634 . Bibcode:2022ApJ...933..221K. doi: 10.3847/1538-4357/ac6c85 . ISSN   0004-637X.
  5. Véron-Cetty, M. -P.; Véron, P. (2006-08-01). "A catalogue of quasars and active nuclei: 12th edition". Astronomy and Astrophysics. 455 (2): 773–777. Bibcode:2006A&A...455..773V. doi:10.1051/0004-6361:20065177. ISSN   0004-6361.
  6. Scarpa, R.; Falomo, R. (1997-09-01). "Are high polarization quasars and BL Lacertae objects really different? A study of the optical spectral properties". Astronomy and Astrophysics. 325: 109–123. Bibcode:1997A&A...325..109S. ISSN   0004-6361.
  7. "A Sample-Oriented Catalogue of BL Lacertae Objects". ned.ipac.caltech.edu. Retrieved 2024-06-08.
  8. Nicolson, G. D.; Glass, I. S.; Feast, M. W.; Andrews, P. J. (1979-10-01). "The BL Lac object PKS 1144-379". Monthly Notices of the Royal Astronomical Society. 189: 29P–31P. Bibcode:1979MNRAS.189P..29N. doi: 10.1093/mnras/189.1.29P . ISSN   0035-8711.
  9. Giommi, P.; Ansari, S. G.; Micol, A. (1995). "1995A&AS..109..267G Page 267". Astronomy and Astrophysics Supplement Series. 109: 267. Bibcode:1995A&AS..109..267G . Retrieved 2024-06-08.
  10. Peterson, B. A.; Bolton, J. G. (1973). "1973ApL....13..187P Page 187". Astrophysical Letters. 13: 187. Bibcode:1973ApL....13..187P . Retrieved 2024-06-08.
  11. "The Emission Line Spectrum of Active Galactic Nuclei and the Unifying Scheme - Veron-Cetty & Veron". ned.ipac.caltech.edu. Retrieved 2024-06-08.
  12. Urry, C. Megan; Padovani, Paolo (1995-09-01). "Unified Schemes for Radio-Loud Active Galactic Nuclei". Publications of the Astronomical Society of the Pacific. 107: 803. arXiv: astro-ph/9506063 . Bibcode:1995PASP..107..803U. doi:10.1086/133630. ISSN   0004-6280.
  13. Safna, P. Z.; Stalin, C. S.; Rakshit, Suvendu; Mathew, Blesson (2020-09-22). "Long term optical and infrared variability characteristics of Fermi Blazars". Monthly Notices of the Royal Astronomical Society. 498 (3): 3578–3591. arXiv: 2008.12072 . doi: 10.1093/mnras/staa2622 . ISSN   0035-8711.
  14. Itoh, Ryosuke; Nalewajko, Krzysztof; Fukazawa, Yasushi; Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Madejski, Greg M.; Schinzel, Frank K.; Kanda, Yuka; Shiki, Kensei; Akitaya, Hiroshi; Kawabata, Miho; Moritani, Yuki; Nakaoka, Tatsuya; Ohsugi, Takashi (December 2016). "Systematic Study of Gamma-Ray-Bright Blazars With Optical Polarization and Gamma-Ray Variability". The Astrophysical Journal. 833 (1): 77. arXiv: 1610.04313 . Bibcode:2016ApJ...833...77I. doi: 10.3847/1538-4357/833/1/77 . ISSN   0004-637X.
  15. Shimmins, A. J.; Bolton, J. G. (1972-01-01). "Accurate Flux Densities at 5009 MHz of 1007 Radio Sources". Australian Journal of Physics Astrophysical Supplement. 23: 1. Bibcode:1972AuJPA..23....1S.
  16. Bolton, J. G.; Shimmins, A. J. (1973-01-01). "The Parkes 2700 MHz Survey (Fifth Part): Catalogue for the Declination zone -35o to -45o". Australian Journal of Physics Astrophysical Supplement. 30: 1. Bibcode:1973AuJPA..30....1B.
  17. Gardner, F. F.; Whiteoak, J. B.; Morris, D. (1975-01-01). "The Linear Polarization of Radio Sources I: Observations at Wavelengths of 6, 11, 18 and 21 cm". Australian Journal of Physics Astrophysical Supplement. 35: 1. Bibcode:1975AuJPA..35....1G.
  18. Kedziora-Chudczer, L. L.; Jauncey, D. L.; Wieringa, M. H.; Tzioumis, A. K.; Reynolds, J. E. (2001-08-01). "The ATCA intraday variability survey of extragalactic radio sources". Monthly Notices of the Royal Astronomical Society. 325 (4): 1411–1430. arXiv: astro-ph/0103506 . Bibcode:2001MNRAS.325.1411K. doi: 10.1046/j.1365-8711.2001.04516.x . ISSN   0035-8711.
  19. Kedziora-Chudczer, L. L.; Jauncey, D. L.; Wieringa, M. H.; Reynolds, J. E.; Tzioumis, A. K. (1998). "1998ASPC..144..271K Page 271". IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources. 144: 271. Bibcode:1998ASPC..144..271K . Retrieved 2024-06-08.
  20. Fan, J. H.; Lin, R. G. (July 2000). "Optical Variability and Periodicity Analysis for Blazars. I. Light Curves for Radio-selected BL Lacertae Objects". The Astrophysical Journal. 537 (1): 101–122. Bibcode:2000ApJ...537..101F. doi:10.1086/308996. ISSN   0004-637X.
  21. Said, N. M. M.; Ellingsen, S. P.; Shabala, S.; Orosz, G.; Liu, J.; Bignall, H. E.; McCallum, J. N.; Reynolds, C. (2021-12-01). "Investigating the evolution of PKS B1144-379: comparison of VLBI and scintillation techniques". Monthly Notices of the Royal Astronomical Society. 508 (2): 2881–2896. Bibcode:2021MNRAS.508.2881S. doi: 10.1093/mnras/stab2724 . ISSN   0035-8711.
  22. 1 2 Said, N M M; Ellingsen, S P; Bignall, H E; Shabala, S; McCallum, J N; Reynolds, C (2020-09-02). "Interstellar scintillation of an extreme scintillator: PKS B1144−379". Monthly Notices of the Royal Astronomical Society. 498 (4): 4615–4634. arXiv: 2009.00812 . doi: 10.1093/mnras/staa2642 . ISSN   0035-8711.
  23. Turner, R. J.; Ellingsen, S. P.; Shabala, S. S.; Blanchard, J.; Lovell, J. E. J.; McCallum, J. N.; Cimò, G. (2012-07-10). "BL LAC OBJECT PKS B1144–379: An Extreme Scintillator". The Astrophysical Journal. 754 (2): L19. arXiv: 1206.6914 . Bibcode:2012ApJ...754L..19T. doi:10.1088/2041-8205/754/2/l19. ISSN   2041-8205.
  24. Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G.; Maraschi, L.; Celotti, A. (2009-11-26). "General physical properties of bright Fermi blazars". Monthly Notices of the Royal Astronomical Society. 402 (1): 497–518. arXiv: 0909.0932 . Bibcode:2010MNRAS.402..497G. doi: 10.1111/j.1365-2966.2009.15898.x . ISSN   0035-8711.