TF30 | |
---|---|
A TF30 in the Oakland Aviation Museum | |
Type | Turbofan |
National origin | United States |
Manufacturer | Pratt & Whitney |
First run | 1960s |
Major applications | General Dynamics F-111 Aardvark Grumman F-14 Tomcat LTV A-7 Corsair II |
The Pratt & Whitney TF30 (company designation JTF10A [1] ) is a military low-bypass turbofan engine originally designed by Pratt & Whitney for the subsonic F6D Missileer fleet defense fighter, but this project was cancelled. It was later adapted with an afterburner for supersonic designs, and in this form it was the world's first production afterburning turbofan, going on to power the F-111 and the F-14A Tomcat, as well as being used in early versions of the A-7 Corsair II without an afterburner. First flight of the TF30 was in 1964 and production continued until 1986.
In 1958, the Douglas Aircraft Company proposed a short-range, four-engined jet airliner to fill the gap below its new DC-8 intercontinental, known internally as the Model 2067. Intended to be marketed as DC-9, it was not directly related to the later twin-engined Douglas DC-9. [1] Pratt & Whitney (P&W) had offered its JT8A turbojet for the airliner, but Douglas preferred to go with a turbofan engine, which would have a greater fuel efficiency than a turbojet. P&W then proposed the JT10A, a half-scale version of its newly developed JT8D turbofan. Development of the new design began in April 1959, [1] using the core of the JT8. [2] Douglas shelved the model 2067 design in 1960, as the targeted US airlines preferred the newly offered Boeing 727. [3]
In 1960, the United States Navy selected the JT10A, designated TF30-P-1, to power the proposed Douglas F6D Missileer, but the project was canceled in April 1961. [4] Meanwhile, the TF30 had been chosen by General Dynamics for its entrant in the TFX competition for the United States Air Force and USN, which was selected for production as the F-111. [5] The version of the TF30 for the F-111 included an afterburner.
The F-111A, EF-111A and F-111E used the TF30-P-3 turbofan. [6] The F-111 had problems with inlet compatibility, and many faulted the placement of the intakes behind the disturbed air of the wing. Newer F-111 variants incorporated improved intake designs and most variants featured more powerful versions of the TF30 engine. The F-111E was updated to use TF30-P-103 engines, the F-111D included the TF30-P-9/109, the FB-111A used the TF-30-P-7/107, and the F-111F had the TF30-P-100.
RAAF F-111Cs were upgraded with the unique P-108 version, using a P-109 engine mated to a P-107 afterburner. The F-111 Engine Business Unit (later taken over by TAE) at RAAF Base Amberley became the world experts on the TF-30 in the years after the USAF retired their fleet and achieved extraordinary increases reliability of the TF-30. [7]
The TF30 proved itself to be well-suited to the requirements of a high-speed low-altitude strike aircraft with a relatively long operational range, and F-111s in all guises would continue to use TF30s until their retirement.
In 1964, the subsonic LTV A-7A Corsair II won the US Navy's VAL competition for a light attack aircraft to replace the Douglas A-4 Skyhawk. [8] The A-7A used a non-afterburning variant of the TF30, which would also power the improved A-7B and A-7C. In 1965, the USAF selected the A-7D as a replacement for its fast-jet F-100 and F-105 supersonic fighter-bombers in the close air support role. Though the USAF had wanted the TF30, Pratt & Whitney was unable to meet the production timetable, because its facilities were already committed to producing other engines. Instead of producing the TF30 under license for P&W, the Allison Engine Company offered to the Air Force its TF41 turbofan, a license-built version of the RB.168-25R Spey. [9] The USAF selected the more powerful TF41 for the A-7D, as did the USN, for its similar A-7E. [8]
The Grumman F-14 Tomcat with the TF30-P-414A was underpowered, because it was the Navy's intent to procure a jet fighter with a thrust-to-weight ratio (in clean configuration) of 1 or better (the US Air Force had the same goals for the F-15 Eagle and F-16 Fighting Falcon). However, due to reliability issues with the intended Pratt & Whitney F401 engines and the intent to incorporate as many of the systems of the failed Navy version of the F-111, the F-111B, into the project, it was deemed that the initial production run of F-14s utilize the F-111B's powerplant. The F-14A's thrust-to-weight ratio was similar to the F-4 Phantom II; however, the new fuselage and wing design provided greater lift and a better climb profile than the F-4. The TF30 was found to be ill-adapted to the demands of air combat and was prone to compressor stalls at high angle of attack (AOA), if the pilot moved the throttles aggressively. Because of the Tomcat's widely spaced engine nacelles, compressor stalls at high AOA were especially dangerous because they tended to produce asymmetric thrust that could send the Tomcat into an upright or inverted spin, from which recovery was very difficult.
The F-14's problems did not afflict TF30 engines in the USAF and RAAF F-111s to nearly the same extent. The F-111, while technically designated as a "fighter," was actually used as a ground attack aircraft and tactical bomber. A typical ground strike mission is characterized by less abrupt changes in throttle, angle of attack and altitude than an air-to-air combat mission. While it can still involve hard and violent maneuvers to avoid enemy missiles and aircraft, these maneuvers are generally still not nearly as hard and violent as those required in air-to-air combat, and the F-111 is a larger and less-maneuverable aircraft. Though the F-14A entered service with the Navy powered by the Pratt & Whitney TF30, by the end of the decade, following numerous problems with the original engine, the Department of Defense began procuring General Electric F110-GE-400 engines and installed them in the F-14A Plus (later redesignated to F-14B in 1991), which entered service with the fleet in 1988. These engines solved the reliability problems and provided nearly 30% more thrust, achieving a 1:1 dry thrust to weight ratio with a low fuel load. The subsequent F-14D, a combination of both remanufactured/upgraded F-14As and new manufacture F-14Ds, also used F110-GE-400 engines.
Source: [10]
Source: [10]
Data fromThe Engines of Pratt & Whitney: A Technical History. [10]
Comparable engines
Related lists
A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of the preceding generation engine technology of the turbojet, and a reference to the additional fan stage added. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.
The General Dynamics F-111 Aardvark is a retired supersonic, medium-range, multirole combat aircraft. Production models of the F-111 had roles that included attack, strategic bombing, reconnaissance and electronic warfare. The name Aardvark was derived from perceived similarities of the aircraft to the animal: a long nose and low-level, terrain-following capabilities. The word "aardvark", from the Afrikaans contraction "earth-pig", was the source of the F-111's nickname of "Pig" during its Australian service.
An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.
The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace. It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well. The engine is also built by IHI Corporation in Japan, TUSAŞ Engine Industries (TEI) in Turkey, and Samsung Techwin in South Korea as part of licensing agreements.
The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.
The Pratt & Whitney F100 is an afterburning turbofan engine designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle. The engine was to be developed in tandem with the F401 which shares a similar core but with the fan upscaled for the U.S. Navy's F-14 Tomcat, although the F401 was later abandoned due to costs and reliability issues. The F100 would also power the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.
The Pratt & Whitney J57 is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 was the first 10,000 lbf (45 kN) thrust class engine in the United States. It was also the first two-spool turbojet to run, a few months before the similar Bristol Olympus in the UK.
The Douglas F6D Missileer was a proposed carrier-based fleet defense fighter designed by Douglas Aircraft Company in response to a 1959 United States Navy requirement. It was designed to be able to loiter for extended periods at a relatively long distance from the Navy's aircraft carriers, engaging hostile aircraft 100 miles (160 km) away with its powerful radar and long-range missiles. Since the enemy would be fired on long before they reached visual range, the aircraft had little dogfighting capability and was strictly subsonic. When doubts were expressed about the Missileer's ability to defend itself after firing its missiles, the value of the project was questioned, leading to its cancellation. Some of the Missileer's systems, primarily the engines, radar, and missiles, continued development in spite of the cancellation, eventually emerging on the ill-fated General Dynamics–Grumman F-111B and successful Grumman F-14 Tomcat years later.
The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.
The Snecma Atar is a French axial-flow turbojet engine built by Snecma. It was derived from the German World War II BMW 018 design, and developed by ex-BMW engineers through a progression of more powerful models. The name is derived from its original design group, Atelier technique aéronautique de Rickenbach near Lindau within the French Occupation Zone of Germany. The Atar powered many of the French post-war jet aircraft, including the Vautour, Étendard and Super Étendard, Super Mystère and several models of the Mirage.
The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series is produced by GE Aerospace. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.
The Snecma M88 is a French afterburning turbofan engine developed by Snecma for the Dassault Rafale fighter.
The SNECMA M53 is an afterburning turbofan engine developed for the Dassault Mirage 2000 fighter by Snecma. The engine is in service with different air forces, including the latest Mirage 2000-5 and 2000-9 multirole fighters.
The Dassault Mirage IIIV, also spelled Mirage III V, was a French vertical take-off and landing (VTOL) prototype fighter aircraft of the mid-1960s developed and produced by Dassault Aviation.
The General Dynamics–Grumman EF-111A Raven is a retired electronic-warfare aircraft designed to replace the EB-66 Destroyer in the United States Air Force. Its crews and maintainers often called it the "Spark-Vark", a play on the F-111's "Aardvark" nickname.
The Volvo RM8 is a low-bypass afterburning turbofan jet engine developed for the Saab 37 Viggen fighter. An augmented bypass engine was required to give both better fuel consumption at cruise speeds and higher thrust boosting for its short take-off requirement than would be possible using a turbojet. In 1962, the civil Pratt & Whitney JT8D engine, as used for airliners such as the Boeing 727, was chosen as the only engine available which could be modified to meet the Viggen requirements. The RM8 was a licensed-built version of the JT8D, but extensively modified for supersonic speeds, with a Swedish-designed afterburner, and was produced by Svenska Flygmotor.
The General Dynamics–Grumman F-111B is a former long-range carrier-based interceptor aircraft planned as a follow-on to the F-4 Phantom II for the United States Navy (USN).
The Dassault Mirage F2 was a French prototype two-seat ground attack/fighter aircraft, which was designed to serve as a test bed for the SNECMA TF306 turbofan engine. The F2 also influenced the subsequent Dassault Mirage G, a variable geometry design.
The General Dynamics–Boeing AFTI/F-111A Aardvark was a research aircraft modified from a General Dynamics F-111 Aardvark to test a Boeing-built supercritical mission adaptive wing (MAW). This MAW, in contrast to standard control surfaces, could smoothly change the shape of its airfoil in flight.
The Pratt & Whitney F401 was an afterburning turbofan engine developed by Pratt & Whitney in tandem with the company's F100. The F401 was intended to power the Grumman F-14 Tomcat and Rockwell XFV-12, but the engine was canceled due to costs and development issues.