Razanandrongobe

Last updated

Razanandrongobe
Temporal range: Bathonian, 167.7–164.7  Ma
O
S
D
C
P
T
J
K
Pg
N
Razanandrongobe.jpg
Holotype of Razanandrongobe, showing teeth and associated maxillary fragment
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Archosauria
Clade: Pseudosuchia
Clade: Crocodylomorpha
Clade: Crocodyliformes
Clade: Metasuchia
Clade: Ziphosuchia
Genus: Razanandrongobe
Maganuco et al., 2006
Species:
R. sakalavae
Binomial name
Razanandrongobe sakalavae
Maganuco et al., 2006

Razanandrongobe (meaning "ancestor [of the] large lizard" in Malagasy) is a genus of carnivorous ziphosuchian crocodyliform from the Middle Jurassic of Madagascar. It contains the type and only species Razanandrongobe sakalavae, named in 2004 by Simone Maganuco and colleagues based on isolated bones found in 2003. The remains, which included a fragment of maxilla and teeth, originated from the Bathonian-aged Sakaraha Formation of Mahajanga, Madagascar. While they clearly belonged to a member of the Archosauria, Maganuco and colleagues refrained from assigning the genus to a specific group because the fragmentary remains resembled lineages among both the theropod dinosaurs and crocodylomorphs.

Contents

Further remains (including a premaxilla and lower jawbone) had been discovered as early as 1972, but were not described until 2017 by Cristiano Dal Sasso and colleagues. These remains allowed them to confidently assign Razanandrongobe as the oldest-known member of the Notosuchia, a group of crocodylomorphs, which partially filled a gap of 74 million years in the group's evolutionary history. Razanandrongobe shows a number of adaptations to a diet containing bones and tendons, including teeth with large serrations and bony structures reinforcing its palate and teeth. Measuring 7 metres (23 ft) long, it was the largest member of the Notosuchia and may have occupied a predatory ecological niche similar to theropods.

Discovery and naming

Initial discovery

Map showing local geology around Ambondromamy, Madagascar Razanandrongobe-fig1-locality.jpg
Map showing local geology around Ambondromamy, Madagascar

All known remains of Razanandrongobe originate from strata belonging to the Sakaraha Formation in the badlands (locally called tanety) surrounding the town of Ambondromamy, Madagascar. In October 2001, Giovanni Pasini first verified the presence of fossil-bearing strata in this region. During an associated field survey of the locality, local collectors discovered two tooth-bearing skull fragments on the surface of the ground, which belonged to two different kinds of reptiles. These fragments were later acquired by Gilles Emringer and Francois Escuillié from Gannat, France, who intended to make them available for research. [1]

Based on the potential for further research, four temporary permits were obtained in the area for exploration from the Mining Cadastral Office of Madagascar. In April 2003, a joint team from the Milan Natural History Museum (MSNM) and Civic Museum of Fossils of Besano launched a privately funded expedition to the region. Pasini collected a number of teeth during this expedition. In June 2003, he gained access to one of the two skull fragments, a maxilla, and recognized that the teeth were identical. The MSNM acquired this specimen; it is now catalogued as MSNM V5770, while the teeth are catalogued as MSNM V5771-5777. [1]

Simone Maganuco, Cristiano Dal Sasso, and Pasini described these specimens in 2006 as representing a new genus and species, Razanandrongobe sakalavae, with MSNM V5770 as the holotype. The genus name is a composite of the Malagasy words "razana-" (ancestor), "androngo-" (lizard), and "-be" (large), collectively meaning "ancestor of the large lizard". The species name is Latin for "of Sakalava", referring to the ethnic group which inhabits the region. [1]

Additional specimens

Dentary and premaxilla, MHNT.PAL.2012.6.1-2, from the same individual of Razanandrongobe Razanandrongobe-fig2-MNHTspecimens.jpg
Dentary and premaxilla, MHNT.PAL.2012.6.1–2, from the same individual of Razanandrongobe

Between 1972 and 1974, the assistant director of technical services of the Sugar Company of Mahavavy had previously collected a dentary (lower jawbone) and a premaxilla from the area where the holotype of Razanandrongobe was discovered. Under the authorization of the Mines and Energy Directorate of Madagascar, these specimens were exported and stored in the collection of D. Descouens. After they were prepared, these fossils were discovered to pertain to Razanandrongobe; based on the fact that they fit together perfectly, they were further inferred to belong to the same individual. In April 2012, these specimens were acquired by Museum of Natural History of Toulouse (MHNT), where they are respectively catalogued as MHNT.PAL.2012.6.1 and MHNT.PAL.2012.6.2. [2]

The MHNT also acquired six skull fragments from Descouens, which are catalogued as MHNT.PAL.2012.6.3–8. The source locality of these specimens is unknown. Among these fragments, the larger ones are spongy with pieces of the surrounding rock (matrix) attached; the smaller ones are denser, whitish, and polished, suggesting prolonged exposure to air and sunlight. The MSNM acquired a further specimen, a tooth crown catalogued as MSNM V7144. This specimen had been collected by the Italian agronomist G. Cortenova, who gave the specimen to the amateur entomologist G. Colombo before his death. Colombo donated the specimen to the MSNM. All of these additional specimens were described in 2017 by Dal Sasso, Pasini, Maganuco, and Guillaume Fleury. [2]

Description

Left to right: Skull of Razanandrongobe (viewed from below) compared to giant crocodyliforms Machimosaurus, Barinasuchus, Sarcosuchus, the saltwater crocodile Crocodylus porosus, and Purussaurus Razanandrongobe-fig9-recon.jpg
Left to right: Skull of Razanandrongobe (viewed from below) compared to giant crocodyliforms Machimosaurus , Barinasuchus , Sarcosuchus , the saltwater crocodile Crocodylus porosus, and Purussaurus

Based on available remains, Razanandrongobe is the largest known Jurassic non-marine member of the Mesoeucrocodylia, and the largest member of the Notosuchia overall. In life, the length of its skull likely surpassed that of Barinasuchus , which has been estimated at 88 centimetres (35 in) long. [2] [3] Dal Sasso and colleagues inferred a body shape similar to the Baurusuchidae, producing an overall length of 7 metres (23 ft), a height at the hip of 1.6 metres (5 ft 3 in), and a weight of 800–1,000 kilograms (1,800–2,200 lb). [4]

Snout

Reconstruction of the snout, viewed from the front; bony nostrils marked as ano Razanandrongobe snout.png
Reconstruction of the snout, viewed from the front; bony nostrils marked as ano

Razanandrongobe had a highly specialized skull, with a robust and rounded (U-shaped) snout that was taller than it was wide (oreinirostral), like Dakosaurus . At the front of the snout, the openings of the bony nostrils, the apertura nasi ossea, faced forward, and were fused at the midline. Smooth depressions known as the perinarial fossae extended down from the nostrils to the level of the teeth. The remainder of the premaxilla had a roughened surface, covered in crests, ridges, and pits. On the palate, two sub-circular depressions were situated near the front of the snout, where the first pair of teeth from the lower jaw would have been located when the mouth was closed. The palatal portion of the maxilla did not close off the bottom edge of the premaxillae, leaving a large opening —- the incisive foramen —- which was about half as long as the premaxilla was wide. [2]

Like its premaxilla, the maxilla of Razanandrongobe was tall and robust. The surface of the palate, which was thickest below the eye sockets, was placed unusually high above the tooth row, at about halfway up the depth of the tooth sockets. At this position, it met the portion of the palate formed by the palatine bones, and bordered the openings known as the suborbital fenestrae. In this way, the palate of Razanandrongobe resembled those of the Ziphosuchia, including Araripesuchus . On the interior of the maxilla, there was a smooth groove, which may have corresponded to a pneumatic opening in the skull that is also seen in the modern Alligator . The inside of the tooth row on the premaxilla and maxilla bore a paradental shelf covered in ridges and furrows. [2]

Lower jaw

Dentary MHNT.PAL.2012.6.1 of Razanandrongobe; splenial attachment marked as asp Razanandrongobe-fig4-dentary.jpg
Dentary MHNT.PAL.2012.6.1 of Razanandrongobe; splenial attachment marked as asp

The lower jaw of Razanandrongobe was also tall and robust. Uniquely, the tip of the lower jaw was devoid of teeth, for a section of the dentary corresponding to the diameter of more than one tooth. The front of the jaw would have been fused; on the inside of the bone, there was a scar running along the rear 20% of the fused portion, representing the attachment of the splenial bone. The tip of the lower jaw would have been strengthened by being upturned at an angle of about 50°. Like the premaxilla, the outer surface of the dentary was textured, bearing a dense network of zigzagging canals for blood vessels (i.e., vascular canals). On the interior surface, immediately adjacent to the tooth row, there was a row of pits, which were enclosed by a groove towards the back of the jaw. The top margin of the bone was convex at the front, followed by a concave region behind it. [2]

Teeth

Razanandrongobe had five teeth in each premaxilla, at least ten in each maxilla, and eight in each half of the dentary. Most of the tooth sockets were sub-circular, although the inner half of the sockets in the maxilla and the front of the dentary were rectangular. All of them were wider than they were long, and were nearly vertical. Larger sockets were separated by narrower distances than smaller teeth, with the separating surfaces being ornamented like the paradental shelves. The teeth themselves are unusual; they bear large serrations on both the front and rear edges, which are proportionally even larger than those of dinosaurs such as Tyrannosaurus . They were also thick, non-constricted, and slightly recurved (pachydont). Several types of teeth are present, making Razanandrongobe heterodont: the teeth at the front of the jaw were U-shaped (or salinon-shaped) in cross-section, while those on the sides were incisiform (incisor-like) and sub-oval in cross-section, with the smallest teeth at the rear being globe-shaped. The smallest teeth were globe-shaped. None of the teeth were particularly hypertrophied like the canine teeth of mammals (i.e., caniniform), but the first three dentary teeth were larger than the rest. [1] [2]

Classification

Archosaurian affinities

Additional specimens MHNT.PAL.2012.6.3-8; maxillary bony palate marked by mbp, premaxillary tooth marked by pmt, bony nostrils marked by ano Razanandrongobe-fig5-MNHTfragments.jpg
Additional specimens MHNT.PAL.2012.6.3–8; maxillary bony palate marked by mbp, premaxillary tooth marked by pmt, bony nostrils marked by ano

In 2006, Maganuco and colleagues identified Razanandrongobe as a member of the Archosauriformes by its serrated teeth and the thecodont condition of its teeth (i.e. their deep implantation in tooth sockets). Both characteristics are widespread among archosauriforms, [5] and Maganuco and colleagues suggested that the former is a synapomorphy (shared specialization) of the group. They also noted that Razanandrongobe possessed unfused interdental plates covering the inner (lingual) surface of its teeth; they are absent in the non-archosauriform archosauromorphs, present but unfused in several lineages among the Archosauriformes, and fused in some theropod dinosaurs. [6] Maganuco and colleagues suggested that unfused interdental plates are either a synapomorphy of Archosauriformes, or a plesiomorphic (ancestrally present) characteristic of crocodyliforms, theropods, and poposaurids. [1] [7]

Considering these characteristics, Maganuco and colleagues placed Razanandrongobe in the Archosauria, but not as part of any basal (early-diverging) lineages due to its heterodont teeth and tall maxilla. While it resembles the Prestosuchidae in the depth and shape of its maxilla, heterodont teeth, paradental shelves, and large size, Maganuco and colleagues considered these traits to have been convergently acquired. Within the Archosauria, they identified two possible positions for Razanandrongobe: Crocodylomorpha and Theropoda, the only lineages of large predatory archosaurs to have survived past the Triassic. However, the original material of Razanandrongobe, consisting of a maxilla and teeth, was too fragmentary to be included in a phylogenetic analysis of archosauriforms, since it lacks nearly all characteristics used in such analyses. [1]

Razanandrongobe had globe-shaped teeth like peirosaurids (Hamadasuchus shown), but they lacked "necks" August 1, 2012 - Hamadasuchus rebouli Skull on Display at the Royal Ontario Museum (ROM 52620).jpg
Razanandrongobe had globe-shaped teeth like peirosaurids ( Hamadasuchus shown), but they lacked "necks"

Among crocodylomorphs, Maganuco and colleagues demonstrated that Razanandrongobe had characteristics intermediate between the basal evolutionary grade "Sphenosuchia" (which is not a proper clade) and the derived Mesoeucrocodylia: the maxilla would have bordered both the internal choanae (nostril openings, like "sphenosuchians") and the suborbital fenestrae (like mesoeucrocodylians); the antorbital fenestrae would have had a narrower front margin and were retracted further back on the skull than "sphenosuchians"; and the paradental shelf was more developed than "sphenosuchians". Its vertical tooth sockets resembled "sphenosuchians", baurusuchians, sebecosuchians, and peirosaurids, while the positioning of the palatal depressions and the globe-shaped teeth particularly resembled peirosaurids (though these teeth bear "necks" in peirosaurids). However, the height of the paradental shelf, the large tooth serrations, the width of the teeth from the side of the jaw, and the relatively flat interdental plates were found to be unusual for crocodylomorphs. [1]

Among theropods, Maganuco and colleagues likened the sub-rectangular tooth sockets, roughened interdental plates, low-crowned teeth, and possible broad contact between the maxilla and jugal in Razanandrongobe to the Abelisauridae; however, they noted that the innervated pits (foramina) on its maxilla were distributed more evenly, and that its teeth differed in their cross-sections and the size of their serrations. Meanwhile, the teeth at the front of its jaw resembled the Tyrannosauridae in its shape and cross-section, and the teeth at the sides of the jaw were thickened similarly (or even further), but the serrations on the teeth were larger and lacked a characteristic groove running across them, and its paradental shelf was larger than tyrannosaurids. Finally, while spinosaurids had a well-developed paradental shelf and thickened teeth, the known spinosaurids at the time were all highly specialized, with palatal shelves that formed the "roof" of the mouth at an acute angle, sub-circular tooth sockets, and teeth that were non-heterodont, high-crowned, and unserrated. [1]

The serrations on the teeth of Razanandrongobe have been compared to those of tyrannosaurids (Tyrannosaurus shown) Sue TRex Skull Full Frontal.JPG
The serrations on the teeth of Razanandrongobe have been compared to those of tyrannosaurids ( Tyrannosaurus shown)

Resolution as a notosuchian

Given the incompleteness of Razanandrongobe, Maganuco and colleagues did not assign Razanandrongobe to a specific group in 2006. Subsequently, the discovery of additional specimens allowed Dal Sasso and colleagues to refine the phylogenetic placement of Razanandrongobe in 2017. The new specimens allowed them to unequivocally identify it as a crocodylomorph and not a theropod, with all similarities having been convergently acquired. Unlike theropods, it has forward-facing and fused bony nostrils that do not contact the maxilla anywhere and are not divided by any bony process; a dentary taller and more robust than any theropod; a splenial which would have been a conspicuous part of the lower jaw, being even visible from the side; a well-developed bony palate on the maxilla; and the previously-noted thickening of the tooth crowns. They also noted another difference from spinosaurids in that the bony nostrils were not retracted up the length of the snout. [2]

Within the Crocodylomorpha, Dal Sasso and colleagues confirmed previous observations that the palate of Razanandrongobe differed from "sphenosuchians", in addition to having a more robust dentary with a shorter toothless portion and a less conspicuous splenial. In particular, the extent of the splenial was probably similar to many other notosuchians, but was not as extreme as the Peirosauridae where the bone contributes to half of the jaw. The fused bony nostrils were most similar in morphology and orientation to the Sphagesauridae; they differed from the Peirosauridae in their complete fusion, and from the Sebecidae in their orientation forwards and not upwards. Its perinarial fossa was a common characteristic among mesoeucrocodylians, and it also lacked a notch in the upper jaw to receive an enlarged lower caniniform tooth; both characteristics were likely plesiomorphic for the group Notosuchia. [2]

Razanandrongobe had forward-facing bony nostrils like sphagesaurids (Caipirasuchus shown) Caipirasuchus stenognathus.png
Razanandrongobe had forward-facing bony nostrils like sphagesaurids ( Caipirasuchus shown)

In Razanandrongobe, the incisive foramen was larger than most mesoeucrocodylians, while the robust palate on the maxilla was more typical. The upturning of the dentary was most like Baurusuchidae and Kaprosuchus , but Uruguaysuchus and Peirosauridae also had dentaries that tapered upwards in an arch. Unlike Uruguaysuchus, the tooth sockets were not fused. Unlike Aplestosuchus and Sebecus , the teeth were not constricted at the base, nor did the first tooth project forwards. While some baurusuchids and sebecids had serrated teeth, their teeth were flattened, and the serrations were much smaller. No notosuchian had sub-oval teeth like Razanandrongobe, but some sphagesaurids had sub-conical teeth. [2]

A phylogenetic analysis conducted by Dal Sasso and colleagues, based on that of Lucas Fiorelli and colleagues in 2016, [8] found that Razanandrongobe was a member of the Ziphosuchia, closely related to Sebecosuchia. The former relation was supported by the lack of constricted tooth crowns and the contact between the dentary and splenial, while the latter was supported by the deep dentary, the similarly sized and symmetrical serrations, the concavity of the dentary, and a dip in the dentary below the level of the tooth sockets at the middle of the tooth row. Their resulting phylogenetic tree (the majority-rule consensus tree) is partially reproduced below. [2]

Notosuchia

Stolokrosuchus

Microsuchus

Peirosauridae

Uruguaysuchidae

Ziphosuchia

Libycosuchus

Candidodon

Simosuchus

Malawisuchus

Pakasuchus

Neuquensuchus

"advanced notosuchians" (including Sphagesauridae)

Sebecosuchia

Baurusuchidae

Sebecidae

Comahuesuchus

Pehuenchesuchus

Razanandrongobe

In 2024, Razanandrongobe was recovered as a non-baurusuchid baurusuchian. [9]

Evolutionary context

Little is known about the origins and early evolution of notosuchians, but the fact that they are the brother group of the Neosuchia (which contains all living crocodilians) in the Mesoeucrocodylia implies that they must have first appeared during the Jurassic. Prior to the recognition of Razanandrongobe as a notosuchian, the oldest-known notosuchians were the Aptian-aged (Cretaceous) Anatosuchus , Candidodon , Malawisuchus , and Uruguaysuchus, leaving a ghost lineage of 74 million years between the group's presumed origin and its oldest members. [2]

The phylogenetic position of Razanandrongobe in the Notosuchia makes it the oldest-known representative of the group. Razanandrongobe predates all of these notosuchians by 42 million years, partially filling the ghost lineage. Its retention of plesiomorphic characteristics is consistent with its status as an early notosuchian; however, for this reason, Dal Sasso and colleagues noted that its close relation to Sebecosuchia — a much younger lineage, being known from the Santonian forward — must be treated as provisional. Dal Sasso and colleagues supported the notion that notosuchians primarily lived on the continent of Gondwana through their evolutionary history (although the remaining ghost lineage prior to Razanandrongobe precludes inferences about their origins). [2]

Palaeobiology

Various teeth of Razanandrongobe; wear patterns marked as ws Razanandrongobe-fig6-teeth.jpg
Various teeth of Razanandrongobe; wear patterns marked as ws

In 2006, Maganuco and colleagues analyzed wear patterns on the surface of Razanandrongobe's teeth. For the teeth at the sides of the jaw, most of the wear is present on the outer (lingual) surface of the teeth, on which a U-shaped chip is present on the top third of the crown. There is also a thinner chip on the front (mesial) edge of the tooth, flattening some of the serrations. By contrast, for the teeth at the front of the jaw, the wear is more present on the inner (labial) surface. They inferred that these wear surfaces more strongly resemble those resulting from tooth-food contact than from tooth-tooth contact, with the enamel having flaked off as the animal bit into bones or other hard objects, [1] based on similar observations for tyrannosaurids. [10]

Skull anatomy also supports a diet for Razanandrongobe that included hard tissues like bones and tendons. Like tyrannosaurids, the serrations on the teeth of Razanandrongobe were adapted to biting into bone in terms of their size, shape, and also the presence of a rounded depression at the base between neighbouring serrations. In tyrannosaurids, the latter was inferred to have distributed force over the serrations and prevented cracks from spreading, or possibly to have gripped meat fibres. [11] The incisiform teeth of Razanandrongobe also resembles the bone-scraping teeth on the premaxillae of tyrannosaurids, and the teeth at the sides of the jaw were similarly reinforced through thickening (though to an even greater extent). The rest of the skull would have been strengthened by the expansion of the paradental shelves to form a "secondary palate", which would have greatly increased resistance to vertical bending and torsion, [12] while the fused interdental plates would have protected the teeth from transverse forces. [1] [13] In 2017, Dal Sasso and colleagues suggested that these feeding adaptations — along with a large skull and body size — made Razanandrongobe a highly specialized terrestrial predator. They inferred that it could have competed with and occupied the ecological niches of theropods in the local ecosystem. [2]

Palaeoecology

Life reconstruction as a crocodyliform, feeding on Archaeodontosaurus; the body is speculatively restored Razanandrongobe sakalavae life recon.png
Life reconstruction as a crocodyliform, feeding on Archaeodontosaurus ; the body is speculatively restored

The strata from which Razanandrongobe fossils were recovered has been referred to as the "Facies Continental" or "Bathonien Facies Mixte Dinosauriens" (Bathonian mixed dinosaurian facies) of the Sakaraha Formation (or the Isalo IIIb Formation) in the Isalo Group. This geological formation consists of cross-bedded layers of sandstone and siltstone with "calcareous paves" and multi-coloured claystone banks. The sandstone surrounding the holotype of Razanandrongobe is fine-grained (0.2–0.3 millimetres (0.008–0.01 in) in diameter) and is mainly composed of quartz, with rarer grains of ilmenite, garnet, and zircon. The depositional environment has been inferred to be fluvial (river-based) or lacustrine (lake-based). [1] [2]

Based on the sea urchins Nucleolites amplus and Acrosalenia colcanapi as index fossils, the Sakaraha Formation has been correlated to the Bathonian stage (167.7–164.7 million years ago) of the Middle Jurassic epoch. Middle Jurassic deposits in the Mahajanga Basin have produced an unusual but poorly-known assemblage of animals. In 2005, the other skull fragment found in the same locality as Razanandrongobe was named as the sauropod dinosaur Archaeodontosaurus . [14] Teeth of pterosaurs were also found at the locality. [15] Animals from other localities include the sauropods Lapparentosaurus and "Bothriospondylus" madagascariensis , and another sauropod based on teeth; [16] theropods of the groups Abelisauridae, basal Ceratosauria, Coelurosauria, and possibly Tetanurae, along with tracks of the ichnogenus Kayentapus ; [17] [18] [19] thalattosuchian crocodyliforms; a mammal belonging to the Tribosphenida; [20] plesiosaurs; and possibly ichthyosaurs. Silicified wood is also present in the strata. [1] [2]

Related Research Articles

<i>Dilophosaurus</i> Genus of theropod dinosaur from Early Jurassic

Dilophosaurus is a genus of theropod dinosaurs that lived in what is now North America during the Early Jurassic, about 186 million years ago. Three skeletons were discovered in northern Arizona in 1940, and the two best preserved were collected in 1942. The most complete specimen became the holotype of a new species in the genus Megalosaurus, named M. wetherilli by Samuel P. Welles in 1954. Welles found a larger skeleton belonging to the same species in 1964. Realizing it bore crests on its skull, he assigned the species to the new genus Dilophosaurus in 1970, as Dilophosaurus wetherilli. The genus name means "two-crested lizard", and the species name honors John Wetherill, a Navajo councilor. Further specimens have since been found, including an infant. Footprints have also been attributed to the animal, including resting traces. Another species, Dilophosaurus sinensis from China, was named in 1993, but was later found to belong to the genus Sinosaurus.

<i>Spinosaurus</i> Genus of spinosaurid dinosaur

Spinosaurus is a genus of spinosaurid dinosaur that lived in what now is North Africa during the Cenomanian to upper Turonian stages of the Late Cretaceous period, about 99 to 93.5 million years ago. The genus was known first from Egyptian remains discovered in 1912 and described by German palaeontologist Ernst Stromer in 1915. The original remains were destroyed in World War II, but additional material came to light in the early 21st century. It is unclear whether one or two species are represented in the fossils reported in the scientific literature. The best known species is S. aegyptiacus from Egypt, although a potential second species, S. maroccanus, has been recovered from Morocco. The contemporary spinosaurid genus Sigilmassasaurus has also been synonymized by some authors with S. aegyptiacus, though other researchers propose it to be a distinct taxon. Another possible junior synonym is Oxalaia from the Alcântara Formation in Brazil.

<i>Giganotosaurus</i> Carcharodontosaurid dinosaur genus from the late Cretaceous period

Giganotosaurus is a genus of theropod dinosaur that lived in what is now Argentina, during the early Cenomanian age of the Late Cretaceous period, approximately 99.6 to 95 million years ago. The holotype specimen was discovered in the Candeleros Formation of Patagonia in 1993 and is almost 70% complete. The animal was named Giganotosaurus carolinii in 1995; the genus name translates to "giant southern lizard", and the specific name honors the discoverer, Ruben Carolini. A dentary bone, a tooth, and some tracks, discovered before the holotype, were later assigned to this animal. The genus attracted much interest and became part of a scientific debate about the maximum sizes of theropod dinosaurs.

<i>Carcharodontosaurus</i> Genus of carcharodontosaurid dinosaur from the Cretaceous period

Carcharodontosaurus is a genus of carnivorous theropod dinosaur that lived in North Africa from about 99 to 94 million years ago during the Cenomanian stage of the Late Cretaceous. Two teeth of the genus, now lost, were first described from Algeria by French paleontologists Charles Depéret and Justin Savornin as Megalosaurus saharicus. A partial skeleton was collected by crews of German paleontologist Ernst Stromer during a 1914 expedition to Egypt. Stromer did not report the Egyptian find until 1931, in which he dubbed the novel genus Carcharodontosaurus, making the type species C. saharicus. Unfortunately, this skeleton was destroyed during the Second World War. In 1995 a nearly complete skull of C. saharicus, the first well-preserved specimen to be found in almost a century, was discovered in the Kem Kem Beds of Morocco; it was designated the neotype in 1996. Fossils unearthed from the Echkar Formation of northern Niger were described and named as another species, C. iguidensis, in 2007.

<i>Monolophosaurus</i> Extinct genus of dinosaurs

Monolophosaurus is an extinct genus of tetanuran theropod dinosaur from the Middle Jurassic Shishugou Formation in what is now Xinjiang, China. It was named for the single crest on top of its skull. Monolophosaurus was a mid-sized theropod at about 5–5.5 metres (16–18 ft) long and weighed 475 kilograms (1,047 lb).

<i>Sinosaurus</i> Genus of dinosaurs

Sinosaurus is an extinct genus of theropod dinosaur which lived during the Early Jurassic Period. It was a bipedal carnivore approximately 5.5 metres (18 ft) in length and 300 kilograms (660 lb) in body mass. Fossils of the animal were found at the Lufeng Formation, in the Yunnan Province of China.

<i>Cristatusaurus</i> Extinct genus of dinosaurs

Cristatusaurus is a genus of theropod dinosaur that lived during the Early Cretaceous Period of what is now Niger, 112 million years ago. It was a baryonychine member of the Spinosauridae, a group of large bipedal carnivores with well-built forelimbs and elongated, crocodile-like skulls. The type species Cristatusaurus lapparenti was named in 1998 by scientists Philippe Taquet and Dale Russell, on the basis of jaw bones and some vertebrae. Two claw fossils were also later assigned to Cristatusaurus. The animal's generic name, which means "crested reptile", alludes to a sagittal crest on top of its snout; while the specific name is in honor of the French paleontologist Albert-Félix de Lapparent. Cristatusaurus is known from the Albian to Aptian Elrhaz Formation, where it would have coexisted with sauropod and iguanodontian dinosaurs, other theropods, and various crocodylomorphs.

<i>Sinocalliopteryx</i> Extinct genus of dinosaurs

Sinocalliopteryx is a genus of carnivorous compsognathid theropod dinosaurs from the Lower Cretaceous Yixian Formation of China.

<span class="mw-page-title-main">Notosuchia</span> Extinct suborder of reptiles

Notosuchia is a suborder of primarily Gondwanan mesoeucrocodylian crocodylomorphs that lived during the Jurassic and Cretaceous. Some phylogenies recover Sebecosuchia as a clade within Notosuchia, others as a sister group ; if Sebecosuchia is included within Notosuchia its existence is pushed into the Middle Miocene, about 11 million years ago. Fossils have been found from South America, Africa, Asia, and Europe. Notosuchia was a clade of terrestrial crocodilians that evolved a range of feeding behaviours, including herbivory (Chimaerasuchus), omnivory (Simosuchus), and terrestrial hypercarnivory (Baurusuchus). It included many members with highly derived traits unusual for crocodylomorphs, including mammal-like teeth, flexible bands of shield-like body armor similar to those of armadillos (Armadillosuchus), and possibly fleshy cheeks and pig-like snouts (Notosuchus). The suborder was first named in 1971 by Zulma Gasparini and has since undergone many phylogenetic revisions.

<i>Duriavenator</i> Genus of theropod dinosaur

Duriavenator is a genus of theropod dinosaur that lived in what is now England during the Middle Jurassic, about 168 million years ago. In 1882, upper and lower jaw bones of a dinosaur were collected near Sherborne in Dorset, and Richard Owen considered the fossils to belong to the species Megalosaurus bucklandii, the first named non-bird dinosaur. By 1964, the specimen was recognised as belonging to a different species, and in 1974 it was described as a new species of Megalosaurus, M. hesperis; the specific name means 'the West' or 'western'. Later researchers questioned whether the species belonged to Megalosaurus, in which many fragmentary theropods from around the world had historically been placed. After examining the taxonomic issues surrounding Megalosaurus, Roger B. J. Benson moved M. hesperis to its own genus in 2008, Duriavenator; this name means "Dorset hunter".

The Isalo III Formation is a geological formation in Madagascar, off the eastern coast of Africa. It dates back to the Middle Jurassic. The use of the term "Isalo III" is somewhat controversial as the two prior units Isalo I and II are Triassic cross-bedded sandstone units that form a continuous depositional sequence, while the "Isalo III" sandstones are not part of the same depositional sequence, and were deposited considerably later. and are perhaps better treated as part of several separate formations. It is traditionally divided into two subunits the lower, Bajocian aged Isalo IIIa unit also known as the Beronono Formation and the upper, Bathonian aged Isalo IIIb unit also known as the Sakaraha Formation or Sakahara Formation. The Sakaraha Formation consists of sandstones, marls and carbonates and represents a coastal plain environment, and is laterally equivalent to the predominantly carbonate Bemaraha Formation, which represents a coastal barrier lagoon complex. The formation is found in the northwest and in the southeast of the country and has provided a variety of fossils.

<i>Limusaurus</i> Genus of theropod dinosaur

Limusaurus is a genus of theropod dinosaur that lived in what is now China during the Late Jurassic, around 161 to 157 million years ago. The type and only species Limusaurus inextricabilis was described in 2009 from specimens found in the Upper Shishugou Formation in the Junggar Basin of China. The genus name consists of the Latin words for "mud" and "lizard", and the species name means "impossible to extricate", both referring to these specimens possibly dying after being mired. Limusaurus was a small, slender animal, about 1.7 m in length and 15 kg (33 lb) in weight, which had a long neck and legs but very small forelimbs. It underwent a drastic morphological transformation as it aged: while juveniles were toothed, these teeth were completely lost and replaced by a beak with age. Several of these features were convergently similar to the later ornithomimid theropods as well as the earlier non-dinosaurian shuvosaurids.

Microsuchus is an extinct genus of mesoeucrocodylians, belonging to Notosuchia. Fossils have been found in the Bajo de la Carpa Formation, dating to the Santonian stage of the Late Cretaceous.

<i>Xixiasaurus</i> Genus of dinosaur

Xixiasaurus is a genus of troodontid dinosaur that lived during the Late Cretaceous Period in what is now China. The only known specimen was discovered in Xixia County, Henan Province, in central China, and became the holotype of the new genus and species Xixiasaurus henanensis in 2010. The names refer to the areas of discovery, and can be translated as "Henan Xixia lizard". The specimen consists of an almost complete skull, part of the lower jaw, and teeth, as well as a partial right forelimb.

Sebecosuchia is an extinct group of mesoeucrocodylian crocodyliforms that includes the families Sebecidae and Baurusuchidae. The group was long thought to have first appeared in the Late Cretaceous with the baurusuchids and become extinct in the Miocene with the last sebecids, but Razanandrongobe pushes the origin of Sebecosuchia to the Middle Jurassic. Fossils have been found primarily from South America but have also been found in Europe, North Africa, Madagascar, and the Indian subcontinent.

<i>Stratiotosuchus</i> Prehistoric genus of reptiles

Stratiotosuchus is an extinct genus of baurusuchid mesoeucrocodylian from the Adamantina Formation in Brazil. It lived during the Late Cretaceous. The first fossils were found in the 1980s, and the type species Stratiotosuchus maxhechti was named in 2001. A hyperpredator, it and other baurusuchids may have filled niches occupied elsewhere by theropod dinosaurs.

<i>Oxalaia</i> Extinct genus of dinosaurs

Oxalaia is a genus of spinosaurid dinosaur that lived in what is now the Northeast Region of Brazil during the Cenomanian stage of the Late Cretaceous period, sometime between 100.5 and 93.9 million years ago. Its only known fossils were found in 1999 on Cajual Island in the rocks of the Alcântara Formation, which is known for its abundance of fragmentary, isolated fossil specimens. The remains of Oxalaia were described in 2011 by Brazilian palaeontologist Alexander Kellner and colleagues, who assigned the specimens to a new genus containing one species, Oxalaia quilombensis. The species name refers to the Brazilian quilombo settlements. Oxalaia quilombensis is the eighth officially named theropod species from Brazil and the largest carnivorous dinosaur discovered there. It is closely related to the African genus Spinosaurus, and/or may be a junior synonym of this taxon.

<i>Aorun</i> Extinct genus of dinosaurs

Aorun (pron.:"AW-roon") is an extinct genus of carnivorous theropod dinosaur first discovered in 2006, with its scientific description published in 2013. It is one of the oldest known coelurosaurian dinosaurs and is estimated to have lived ~161.6 million years ago during the Late Jurassic Period. It is the fifth theropod discovered from Wucaiwan, China.

This glossary explains technical terms commonly employed in the description of dinosaur body fossils. Besides dinosaur-specific terms, it covers terms with wider usage, when these are of central importance in the study of dinosaurs or when their discussion in the context of dinosaurs is beneficial. The glossary does not cover ichnological and bone histological terms, nor does it cover measurements.

Barrosasuchus is a genus of peirosaurid notosuchian from the Santonian of Argentina and part of the extensive peirosaurid record of Late Cretaceous Patagonia. It contains one species, Barrosasuchus neuquenianus. B. neuquenianus is known from an almost complete skull and the majority of the articulated postcranial skeleton, making it the best preserved Patagonian peirosaurid.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Maganuco, S.; Dal Sasso, C.; Pasini, G. (2006). "A new large predatory archosaur from the Middle Jurassic of Madagascar". Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano. 147 (1): 19–51.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dal Sasso, C.; Pasini, G.; Fleury, G.; Maganuco, S. (2017). "Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian". PeerJ. 5: e3481. doi: 10.7717/peerj.3481 . PMC   5499610 . PMID   28690926.
  3. Molnar, R.E. (2013). "Cenozoic dinosaurs in South America revisited". Abstracts with Programs. 47th Annual Meeting of the Geological Society of America. Vol. 45 (3). San Antonio: Geological Society of America. p. 83.
  4. "Giant croc had teeth like a T. rex". BBC News . BBC. July 4, 2017. Retrieved April 22, 2020.
  5. Sereno, P.C. (1991). "Basal Archosaurs: Phylogenetic Relationships and Functional Implications". Journal of Vertebrate Paleontology. 11 (S4): 1–53. doi:10.1080/02724634.1991.10011426.
  6. Juul, L. (1994). "The phylogeny of basal archosaurs". Palaeontologia Africana. 31: 1–38.
  7. Nesbitt, S.J. (2011). "The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades". Bulletin of the American Museum of Natural History. 352: 1–292. doi: 10.1206/352.1 . S2CID   83493714.
  8. Fiorelli, L.E.; Leardi, J.M.; Hechenleitner, E.M.; Pol, D.; Basilici, G.; Grellet-Tinner, G. (2016). "A new Late Cretaceous crocodyliform from the western margin of Gondwana (La Rioja Province, Argentina)". Cretaceous Research. 60: 194–209. doi:10.1016/j.cretres.2015.12.003.
  9. Martins, Kawan Carvalho; Queiroz, Marcos Vinicius; Ruiz, Juan Vítor; Langer, Max Cardoso; Montefeltro, Felipe Chinaglia (2024). "A new Baurusuchidae (Notosuchia, Crocodyliformes) from the Adamantina Formation (Bauru Group, Upper Cretaceous), with a revised phylogenetic analysis of Baurusuchia". Cretaceous Research. 153. 105680. doi:10.1016/j.cretres.2023.105680. ISSN   0195-6671.
  10. Schubert, B.W.; Unger, P.S. (2005). "Wear facets and enamel spalling in tyrannosaurid dinosaurs". Acta Palaeontologica Polonica. 50 (1): 93–99.
  11. Abler, W.L. (2001). "A kerf-and-drill model of tyrannosaur tooth serrations". In Tanke, D. H.; Carpenter, K. (eds.). Mesozoic Vertebrate Life. Life of the Past. Indiana University Press. pp. 84–89. ISBN   9780253339072.
  12. Busbey, A.B. (1995). "The structural consequences of skull flattening in crocodilians". In Thomason, J.J. (ed.). Functional Morphology in Vertebrate Paleontology. Cambridge University Press. pp. 173–192. ISBN   9780521629218.
  13. Senter, P. (2003). "New information on cranial and dentary features of the Triassic archosauriform reptile Euparkeria capensis". Palaeontology. 46 (3): 613–621. doi: 10.1111/1475-4983.00311 .
  14. Buffetaut, E. (2005). "A new sauropod dinosaur with prosauropod-like teeth from the Middle Jurassic of Madagascar". Bulletin de la Société Géologique de France. 176 (5): 467–473. doi:10.2113/176.5.467.
  15. Dal Sasso, C.; Pasini, G. (2003). "First record of pterosaurs (Pterosauria, Archosauromorpha, Diapsida) in the Middle Jurassic of Madagascar". Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano. 144 (2): 281–296.
  16. Bindellini, G.; Dal Sasso, C. (2019). "Sauropod teeth from the Middle Jurassic of Madagascar, and the oldest record of Titanosauriformes". Papers in Palaeontology. 7: 1–25. doi:10.1002/spp2.1282. S2CID   203376597.
  17. Maganuco, S.; Cau, A.; Pasini, G. (2005). "First description of theropod remains from the Middle Jurassic (Bathonian) of Madagascar". Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano. 146 (2): 165–202.
  18. Maganuco, S.; Cau, A.; Dal Sasso, C.; Pasini, G. (2007). "Evidence of large theropods from the Middle Jurassic of the Mahajanga Basin, NW Madagascar, with implications for ceratosaurian pedal ungual evolution". Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano. 148 (2): 261–271.
  19. Wagensommer, A.; Latiano, M.; Leroux, G.; Cassano, G.; D'Orazi Porchetti, S. (2011). "New dinosaur tracksites from the Middle Jurassic of Madagascar: ichnotaxonomical, behavioural and palaeoenvironmental implications". Palaeontology. 55 (1): 109–126. doi:10.1111/j.1475-4983.2011.01121.x.
  20. Flynn, J.J.; Parrish, J.M.; Rakotosaminanana, B.; Simpson, W.F.; Wyss, A.R. (1999). "A Middle Jurassic mammal from Madagascar". Nature. 401 (6748): 57–60. Bibcode:1999Natur.401...57F. doi:10.1038/43420. S2CID   40903258.