Soft chemistry

Last updated

Soft chemistry (also known as chimie douce) is a type of chemistry that uses reactions at ambient temperature in open reaction vessels with reactions similar to those occurring in biological systems. [1] [2]

Aims

The aim of the soft chemistry is to synthesize materials, [3] drawing capacity of living beings - more or less basic - such as diatoms capable of producing glass from silicates dissolved. It is a new branch of materials science that differs from conventional solid-state chemistry and its application to the intense energy to explore the chemical inventiveness of the living world. This specialty emerged in the 1980s around the label of "chimie douce", which was first published by the French chemist, Jacques Livage [4] in Le Monde, 26 October 1977. [5] French hits, the term soft chemistry is employed as such in the early twenty-first century in scientific publications, English and others. His mode of synthesis is similar generally for reactions involved in the polymerizations based on organic and the establishment of solutions reactive energy intake without essential polycondensation. The fundamental interest of this kind of polymerization mineral obtained at room temperature is to preserve organic molecules or microorganisms that wishes to fit. The products obtained by means of the so-called soft chemistry sol-gel can be stored in several types:

The early results have included the creation of glasses and ceramic with new properties. These different structures are more or less composite mobilized a wide range of applications ranging from health to the needs of the conquest of space. Beyond its mode of synthesis, a compound with the label soft chemistry combines the advantages of the mineral (resistance, transparency, repetition patterns, etc.) and now exploring the potential of the biochemistry and organic chemistry (interface with the organic world, reactivity, synthesis capability, etc.). According to its practitioners, "soft chemistry" is only in its early success and opens up vast prospects.

Related Research Articles

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as inorganic chemistry.

Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules. However, polymer chemistry is typically related to synthetic and organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, such as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

<span class="mw-page-title-main">Steric effects</span> Geometric aspects of ions and molecules affecting their shape and reactivity

Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is generally a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape (conformation) and reactivity of ions and molecules. Steric effects complement electronic effects, which dictate the shape and reactivity of molecules. Steric repulsive forces between overlapping electron clouds result in structured groupings of molecules stabilized by the way that opposites attract and like charges repel.

Boron trifluoride is the inorganic compound with the formula BF3. This pungent, colourless, and toxic gas forms white fumes in moist air. It is a useful Lewis acid and a versatile building block for other boron compounds.

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers in solution into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol–gel process is used to produce ceramic nanoparticles.

Aluminium phosphate is a chemical compound. In nature it occurs as the mineral berlinite. Many synthetic forms of aluminium phosphate are known. They have framework structures similar to zeolites and some are used as catalysts, ion-exchangers or molecular sieves. Commercial aluminium phosphate gel is available.

<span class="mw-page-title-main">Polyphosphazene</span>

Polyphosphazenes include a wide range of hybrid inorganic-organic polymers with a number of different skeletal architectures with the backbone P-N-P-N-P-N-. In nearly all of these materials two organic side groups are attached to each phosphorus center. Linear polymers have the formula (N=PR1R2)n, where R1 and R2 are organic (see graphic). Other architectures are cyclolinear and cyclomatrix polymers in which small phosphazene rings are connected together by organic chain units. Other architectures are available, such as block copolymer, star, dendritic, or comb-type structures. More than 700 different polyphosphazenes are known, with different side groups (R) and different molecular architectures. Many of these polymers were first synthesized and studied in the research group of Harry R. Allcock.

<span class="mw-page-title-main">Hexachlorophosphazene</span> Chemical compound

Hexachlorophosphazene is an inorganic compound with the chemical formula (NPCl2)3. The molecule has a cyclic, unsaturated backbone consisting of alternating phosphorus and nitrogen atoms, and can be viewed as a trimer of the hypothetical compound N≡PCl2. Its classification as a phosphazene highlights its relationship to benzene. There is large academic interest in the compound relating to the phosphorus-nitrogen bonding and phosphorus reactivity.

In polymer chemistry, an inorganic polymer is a polymer with a skeletal structure that does not include carbon atoms in the backbone. Polymers containing inorganic and organic components are sometimes called hybrid polymers, and most so-called inorganic polymers are hybrid polymers. One of the best known examples is polydimethylsiloxane, otherwise known commonly as silicone rubber. Inorganic polymers offer some properties not found in organic materials including low-temperature flexibility, electrical conductivity, and nonflammability. The term inorganic polymer refers generally to one-dimensional polymers, rather than to heavily crosslinked materials such as silicate minerals. Inorganic polymers with tunable or responsive properties are sometimes called smart inorganic polymers. A special class of inorganic polymers are geopolymers, which may be anthropogenic or naturally occurring.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

<span class="mw-page-title-main">Silsesquioxane</span> Molecular compound with applications in ceramics

A silsesquioxane is an organosilicon compound with the chemical formula [RSiO3/2]n. Silsesquioxanes are colorless solids that adopt cage-like or polymeric structures with Si-O-Si linkages and tetrahedral Si vertices. Silsesquioxanes are members of polyoctahedral silsesquioxanes ("POSS"), which have attracted attention as preceramic polymer precursors to ceramic materials and nanocomposites. Diverse substituents (R) can be attached to the Si centers. The molecules are unusual because they feature an inorganic silicate core and an organic exterior. The silica core confers rigidity and thermal stability.

<span class="mw-page-title-main">Radical (chemistry)</span> Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

<span class="mw-page-title-main">Hybrid material</span> Composite materials

Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic level. Mixing at the microscopic scale leads to a more homogeneous material that either show characteristics in between the two original phases or even new properties.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Borane, also known as borine, is an unstable and highly reactive molecule with the chemical formula BH
3
. The preparation of borane carbonyl, BH3(CO), played an important role in exploring the chemistry of boranes, as it indicated the likely existence of the borane molecule. However, the molecular species BH3 is a very strong Lewis acid. Consequently, it is highly reactive and can only be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen. It normally dimerizes to diborane in the absence of other chemicals.

<span class="mw-page-title-main">Star-shaped polymer</span> Polymer structure with linear chains connected to a central core

In polymer science, star-shaped polymers are the simplest class of branched polymers with a general structure consisting of several linear chains connected to a central core. The core, or the center, of the polymer can be an atom, molecule, or macromolecule; the chains, or "arms", consist of variable-length organic chains. Star-shaped polymers in which the arms are all equivalent in length and structure are considered homogeneous, and ones with variable lengths and structures are considered heterogeneous.

Molecular layer deposition (MLD) is a vapour phase thin film deposition technique based on self-limiting surface reactions carried out in a sequential manner. Essentially, MLD resembles the well established technique of atomic layer deposition (ALD) but, whereas ALD is limited to exclusively inorganic coatings, the precursor chemistry in MLD can use small, bifunctional organic molecules as well. This enables, as well as the growth of organic layers in a process similar to polymerization, the linking of both types of building blocks together in a controlled way to build up organic-inorganic hybrid materials.

Jean Marcel Rouxel was a French synthetic chemist known for his work in solid state synthesis of low-dimensional materials. He pioneered the use of solid precursors in soft chemistry.

References

  1. Sanchez, C.; Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C.; Nicole, L. (2010), ""Chimie douce": A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials", Comptes Rendus Chimie, 13 (1–2): 3–39, doi: 10.1016/j.crci.2009.06.001
  2. Gopalakrishnan, J. (1995), "Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials", Chemistry of Materials, 7 (7): 1265–1275, doi:10.1021/cm00055a001
  3. Brec, R.; Rouxel, Jean; Tournoux, M. (1994), Soft chemistry routes to new materials: chimie douce: proceedings of the international symposium held in Nantes, France, September 6–10, 1993, Aedermannsdorf, Switzerland: Trans Tech Pubs, ISBN   0-87849-677-7
  4. Livage, J. (1991), "Vanadium pentoxide gels", Chemistry of Materials, 3 (4): 578–593, doi:10.1021/cm00016a006
  5. J. Livage, "Vers une chimie écologique. Quand l’air et l’eau remplacent le pétrole", Le Monde (1977) October 26th