Translational glycobiology

Last updated

Translational glycobiology or applied glycobiology is the branch of glycobiology and glycochemistry that focuses on developing new pharmaceuticals through glycomics and glycoengineering. [1] Although research in this field presents many difficulties, translational glycobiology presents applications with therapeutic glycoconjugates, with treating various bone diseases, and developing therapeutic cancer vaccines and other targeted therapies. [2] [3] Some mechanisms of action include using the glycan for drug targeting, engineering protein glycosylation for better efficacy, and glycans as drugs themselves.

Contents

Background

Glycans, or polysaccharides, are instrumental in many facets of biology, from decorations on cell membranes being involved in cell signaling and interaction to post-translational modifications on proteins warranting function. [4] Yet even though sugars are the most abundant class of organic molecules found on earth, the study of their structure and function are not as well known as other biological molecules such as proteins and ribonucleic acids. This is partly due to the fact that glycans have no direct biosynthetic template in the genome, as opposed to protein, and thus have not been as effectively elucidated by the age of genomics. [5] Furthermore, the polymeric nature of glycans presents a challenge to study, as there are plethora of combinations of linkages (unlike in DNA and protein) and many different types of monosaccharides and isomers. [5]

Seeing as glycans play a key role in the biology of organisms, translational glycobiology thus aims to utilize them both as targets for drugs or as drugs themselves. New or improved glycan products arise as more is learned about the complex biological and chemical roles glycans play, paralleled by advancements in the carbohydrate synthesis toolbox.

Therapeutic uses

Since glycans play an important role in intercellular interactions and protein, they serve as viable targets for various therapeutic interactions. Multiple current therapeutics aim to take advantage of their role in signaling pathways, and target their biosynthesis or engineer related glycoproteins. These interactions can be controlled by encouraging or inhibiting the presence of those glycans that mediate signaling, which is the mechanism of action for a number of extant drugs, including heparin, erythropoietin, the antivirals oseltamivir and zanamivir, and the Hib vaccine. [6] Furthermore, the glycans themselves can serve as drugs and there is ongoing research and development to engineer more effective ones.

Drug targeting

Overview of several types of N-Glycans that can vary on different HIV strains. Glycosylation.jpg
Overview of several types of N-Glycans that can vary on different HIV strains.

The surfaces of cancer cells often exhibit aberrant glycosylation, which serves to mediate cell proliferation, metastasis, and tumor progression. However, because these glycans often differ from those present on healthy cells, they also serve as candidates to act as cancer biomarkers for use in diagnostics and in developing targeted therapies that discriminate between cancerous cells and normal host tissue. One such therapy involves the use of enzyme inhibitors that target those enzymes involved in the biosynthesis of cancer-associated glycans. [7] Another treatment is cancer immunotherapy, which directs the immune system to attack tumor cells expressing the targeted altered glycoconjugates. [8]

For example, modifying CD44 antigens using glycosyltransferase-programmed stereosubstitution (GPS), the HCELL expression on the surfaces of human mesenchymal stem cells and hematopoietic stem cells can be enforced, effectively homing those cells to the bone marrow of their host. [9] Once mesenchymal stem cells transmigrate through the bone marrow endothelium, they differentiate into osteoblasts and begin contributing to bone formation. This technique has been proposed as a potential treatment for numerous bone diseases, including osteogenesis imperfecta. [10]

Other therapeutic measures involving glycans include epitope recognition for both vaccine and antibody production. This has been an area of interest especially in the field of HIV vaccines, as the immense genetic diversity of strains and high degree of glycosylation leads to much difficulty in developing antibodies that bind to viral particles. [11] The heavy glycosylation of these proteins can mask peptide epitopes, making designing antibodies targeted to certain proteins sections all the more difficult. Therefore, some have turned to translational glycobiology to develop antibodies using semi-synthetic and fully synthetic oligosaccharides as antigens. Many of these discoveries have focused on the GP120 surface glycoprotein, which is naturally heavily glycosylated with high mannose glycans. [11]

Protein glycosylation

Mannose-6-Phosphate (left) and Sialic Acid (right) are common saccharides that are found on glycosylated residues. Different Constituents of Protein Glycans.tif
Mannose-6-Phosphate (left) and Sialic Acid (right) are common saccharides that are found on glycosylated residues.

Many proteins are glycosylated on certain residues, which can affect the proteome. [12]

Glycans can interact with receptors, which in turn affect their cellular and subcellular localization. For example, cytokines and the subgroup chemokines are small signaling proteins that are involved in the immune response. [13] Many of the N-linked glycans on these cytokines play an important role in metabolic turnover and by engineering the glycoform and its branching, there can be advantageous physiochemical affects on the immune response.

Furthermore, glycosylated proteins, or glycoproteins, can have increased resistance to degradation by proteases, which will increase the half-life of those proteins. For example, interferon beta has been shown to be important in the treatment of multiple sclerosis. Recombinant versions of interferon beta have been produced in Escherichia coli, with the glycosylated form being more stable and resistant to protease degradation, while the non-glycosylated form is degraded much more quickly. [14] Engineered glycoproteins have also been instrumental in enzyme replacement therapy (ERT). This has been of particular interest in the development of therapeutics for lysosomal storage disease. Proper delivery of these enzymes is highly dependent on the mannose 6-phosphate (M6P) tagging on N-glycans. [15] Thus, engineering of these N-glyans, such as by modification of branching patterns, sialic acid capping, M6P tagging, monosaccharide constituents, and glycosidic bond linkage, there can be increased efficacy of lysosomal targeting and better delivery to the central nervous system through the blood brain barrier. [15]

2D chemical structure of Zanamivir. Zanamivir Structure.tif
2D chemical structure of Zanamivir.

Additionally, glycoengineering has been utilized with neural stem cell cultures to increase adhesion to the extracellular matrix through the treatment of an N-acetylmannosamine analog.

Glycan small molecule drugs

Glycans and glycan-based molecules have been used as drugs themselves. The two main functions of these drugs are to either bind protein or inhibit glycosyl degradation. [16] For example, engineered glycans, such as Zanamivir and Oseltamivir have been designed to bind to viral sialidases, which are enzymes that play key roles in viral replication cycles, such as for influenza. With these sialidases inhibited, viral budding and entry into host cells is inhibited. Other drugs, such as Miglitol and Acarbose, serve as therapeutic drugs to people with Type 2 diabetes, as these engineered glycan derivatives bind to glucosidases and amylases to help control patient's blood sugar level. [16]

See also

Related Research Articles

Glycomics is the comprehensive study of glycomes, including genetic, physiologic, pathologic, and other aspects. Glycomics "is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology. The term glycomics is derived from the chemical prefix for sweetness or a sugar, "glyco-", and was formed to follow the omics naming convention established by genomics and proteomics.

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

<span class="mw-page-title-main">Mannose</span> Chemical compound

Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation are associated with mutations in enzymes involved in mannose metabolism.

Defined in the narrowest sense, glycobiology is the study of the structure, biosynthesis, and biology of saccharides that are widely distributed in nature. Sugars or saccharides are essential components of all living things and aspects of the various roles they play in biology are researched in various medical, biochemical and biotechnological fields.

Glycosylation is the reaction in which a carbohydrate, i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule in order to form a glycoconjugate. In biology, glycosylation usually refers to an enzyme-catalysed reaction, whereas glycation may refer to a non-enzymatic reaction.

An oligosaccharide is a saccharide polymer containing a small number of monosaccharides. Oligosaccharides can have many functions including cell recognition and cell adhesion.

The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.

<span class="mw-page-title-main">CD44</span> Cell-surface glycoprotein

The CD44 antigen is a cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromosome 11. CD44 has been referred to as HCAM, Pgp-1, Hermes antigen, lymphocyte homing receptor, ECM-III, and HUTCH-1.

Glycoconjugates are the classification family for carbohydrates – referred to as glycans – which are covalently linked with chemical species such as proteins, peptides, lipids, and other compounds. Glycoconjugates are formed in processes termed glycosylation.

<span class="mw-page-title-main">Glycosyltransferase</span> Class of enzymes

Glycosyltransferases are enzymes that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.

<span class="mw-page-title-main">Chi-Huey Wong</span> Taiwanese-American biochemist (born 1948)

Chi-Huey Wong is a Taiwanese-American biochemist. He is currently the Scripps Family Chair Professor at the Scripps Research Institute, California in the department of chemistry. He is a member of the United States National Academy of Sciences, as awarded the 2014 Wolf Prize in Chemistry and 2015 RSC Robert Robinson Award. Wong is also the holder of more than 100 patents and publisher of more 700 scholarly academic research papers under his name.

Glycoproteomics is a branch of proteomics that identifies, catalogs, and characterizes proteins containing carbohydrates as a result of post-translational modifications. Glycosylation is the most common post-translational modification of proteins, but continues to be the least studied on the proteome level. Mass spectrometry (MS) is an analytical technique used to improve the study of these proteins on the proteome level. Glycosylation contributes to several concerted biological mechanisms essential to maintaining physiological function. The study of the glycosylation of proteins is important to understanding certain diseases, like cancer, because a connection between a change in glycosylation and these diseases has been discovered. To study this post-translational modification of proteins, advanced mass spectrometry techniques based on glycoproteomics have been developed to help in terms of therapeutic applications and the discovery of biomarkers.

<span class="mw-page-title-main">DPAGT1</span> Protein-coding gene in the species Homo sapiens

UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme that in humans is encoded by the DPAGT1 gene.

<i>N</i>-linked glycosylation Attachment of an oligosaccharide to a nitrogen atom

N-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom, in a process called N-glycosylation, studied in biochemistry. The resulting protein is called an N-linked glycan, or simply an N-glycan.

O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility. Because of the many functions they have, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in all domains of life, including eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia, Neisseria gonorrhoeae and Acinetobacter baumannii.

<span class="mw-page-title-main">PNGase F</span>

Peptide:N-glycosidase F, commonly referred to as PNGase F, is an amidase of the peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase class. PNGase F works by cleaving between the innermost GlcNAc and asparagine residues of high mannose, hybrid, and complex oligosaccharides from N-linked glycoproteins and glycopeptides. This results in a deaminated protein or peptide and a free glycan.

N-glycosyltransferase is an enzyme in prokaryotes which transfers individual hexoses onto asparagine sidechains in substrate proteins, using a nucleotide-bound intermediary, within the cytoplasm. They are distinct from regular N-glycosylating enzymes, which are oligosaccharyltransferases that transfer pre-assembled oligosaccharides. Both enzyme families however target a shared amino acid sequence asparagine—-any amino acid except proline—serine or threonine (N–x–S/T), with some variations.

<span class="mw-page-title-main">Glycan-protein interactions</span> Class of biological intermolecular interactions

Glycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions. For instance, SARS-CoV-2, the causative agent of COVID-19, employs its extensively glycosylated spike (S) protein to bind to the ACE2 receptor, allowing it to enter host cells. The spike protein is a trimeric structure, with each subunit containing 22 N-glycosylation sites, making it an attractive target for vaccine search.

GlycoRNAs are small non-coding RNAs with sialylated glycans.

References

  1. Sackstein R (June 2016). "Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology". Glycobiology. 26 (6): 560–570. doi:10.1093/glycob/cww026. PMC   4847618 . PMID   26933169.
  2. Slovin SF, Keding SJ, Ragupathi G (August 2005). "Carbohydrate vaccines as immunotherapy for cancer". Immunology and Cell Biology. 83 (4): 418–428. doi:10.1111/j.1440-1711.2005.01350.x. PMID   16033538. S2CID   40251150.
  3. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (February 1999). "Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity". Nature Biotechnology. 17 (2): 176–180. doi:10.1038/6179. PMID   10052355. S2CID   20078393.
  4. Hudak JE, Bertozzi CR (January 2014). "Glycotherapy: new advances inspire a reemergence of glycans in medicine". Chemistry & Biology. 21 (1): 16–37. doi:10.1016/j.chembiol.2013.09.010. PMC   4111574 . PMID   24269151.
  5. 1 2 Marth JD (September 2008). "A unified vision of the building blocks of life". Nature Cell Biology. 10 (9): 1015–1016. doi:10.1038/ncb0908-1015. PMC   2892900 . PMID   18758488.
  6. Hudak JE, Bertozzi CR (January 2014). "Glycotherapy: new advances inspire a reemergence of glycans in medicine". Chemistry & Biology. 21 (1): 16–37. doi:10.1016/j.chembiol.2013.09.010. PMC   4111574 . PMID   24269151.
  7. Pinho SS, Reis CA (September 2015). "Glycosylation in cancer: mechanisms and clinical implications". Nature Reviews. Cancer. 15 (9): 540–555. doi:10.1038/nrc3982. PMID   26289314. S2CID   19169783.
  8. Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR (2015). "Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer". Frontiers in Oncology. 5: 138. doi: 10.3389/fonc.2015.00138 . PMC   4479729 . PMID   26161361.
  9. Sackstein R (June 2016). "Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology". Glycobiology. 26 (6): 560–570. doi:10.1093/glycob/cww026. PMC   4847618 . PMID   26933169.
  10. Sackstein R (July 2009). "Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration". Immunological Reviews. 230 (1): 51–74. doi:10.1111/j.1600-065X.2009.00792.x. PMC   4306344 . PMID   19594629.
  11. 1 2 Fernández-Tejada A, Haynes BF, Danishefsky SJ (June 2015). "Designing synthetic vaccines for HIV". Expert Review of Vaccines. 14 (6): 815–831. doi:10.1586/14760584.2015.1027690. PMC   4693608 . PMID   25824661.
  12. Gamblin DP, Scanlan EM, Davis BG (January 2009). "Glycoprotein synthesis: an update". Chemical Reviews. 109 (1): 131–163. doi:10.1021/cr078291i. PMID   19093879.
  13. Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ (2018). "Improving Immunotherapy Through Glycodesign". Frontiers in Immunology. 9: 2485. doi: 10.3389/fimmu.2018.02485 . PMC   6224361 . PMID   30450094.
  14. Axford J, Alavi A, Cummings R, Lauc G, Opdenakker G, Reis C, Rudd P (October 2019). "Translational glycobiology: from bench to bedside". Journal of the Royal Society of Medicine. 112 (10): 424–427. doi:10.1177/0141076819865863. PMC   6794674 . PMID   31526214.
  15. 1 2 Oh DB (August 2015). "Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases". BMB Reports. 48 (8): 438–444. doi:10.5483/BMBRep.2015.48.8.101. PMC   4576951 . PMID   25999178.
  16. 1 2 Hudak JE, Bertozzi CR (January 2014). "Glycotherapy: new advances inspire a reemergence of glycans in medicine". Chemistry & Biology. 21 (1): 16–37. doi:10.1016/j.chembiol.2013.09.010. PMC   4111574 . PMID   24269151.