AMPTE-UKS

Last updated

AMPTE-UKS
NamesAMPTE-United Kingdom Subsatellite
Mission type Magnetosphere research
Operator NASA / United Kingdom
COSPAR ID 1984-088C OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 15201
Mission duration5 months (achieved)
Spacecraft properties
SpacecraftAMPTE-UKS
Spacecraft typeActive Magnetospheric Particle Tracer Explorers (AMPTE)
Bus AMPTE-United Kingdom Subsatellite
Manufacturer Rutherford Appleton Laboratory
Launch mass77 kg (170 lb)
Start of mission
Launch date16 August 1984, 14:48 UTC [1]
Rocket Delta 3924 (Delta 175)
Launch site Cape Canaveral, LC-17A
Contractor Douglas Aircraft Company
Entered service16 August 1984
End of mission
Last contact15 January 1985
Orbital parameters
Reference system Geocentric orbit [2]
Regime Highly elliptical orbit
Perigee altitude 550 km (340 mi)
Apogee altitude 112,800 km (70,100 mi)
Inclination 28.50°
Period 2630.00 minutes
Instruments
3-D Electron Analyzer (6 eV-25 keV, 8-Sector, 5-seconds Averaged)
3-D Ion Analyzer (10 eV-20 keV/Q, 12-Sector, 5-seconds Averaged)
Particle Modulation Analyzer (1 Hz-1 MHz Fast Fourier Transform)
Plasma Wave Spectrometer (100 Hz-3 MHz E, 100 Hz-60 KHz B)
Triaxial Magnetometer (Dual Range 0.03 nT Accuracy)
Explorer program
  AMPTE-IRM
Cosmic Background Explorer (Explorer 66) 
 

AMPTE-UKS, also called as AMPTE-United Kingdom Subsatellite, was a United Kingdom satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE (Active Magnetospheric Particle Tracer Explorers) mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space. [3]

Contents

Mission

The AMPTE-UKS is one of the three components of the international space mission AMPTE, which also included AMPTE-CCE (Charge Compositio9n Explorer), designed by NASA, and AMPTE-IRM (Ion Release Module), provided by the Germany. [3]

Spacecraft

The program consisted of three spacecraft: the AMPTE-CCE, which measured, in the magnetosphere, the ions released by the AMPTE-IRM; the AMPTE-IRM, which provided multiple ion releases in the solar wind, the magnetosheath, and the magnetotail, with in situ diagnostics of each; and the AMPTE-UKS. The AMPTE-UKS was one spacecraft of the AMPTE program (along with AMPTE-CCE and AMPTE-IRM) and served as a subsatellite of the AMPTE-IRM spacecraft. Its purpose was to help distinguish between spatial structure and temporal changes in the plasma phenomena initiated by ion releases from the AMPTE-IRM and in the natural magnetospheric environment. Measured quantitie were similar to those of the AMPTE-IRM and include magnetic fields, positive ions, electrons, plasma waves, and modulations in ions and electrons. The spacecraft was spin-stabilized at 12 rpm and employed S-band communications. It carried a cold gas propulsion system and a very high frequency (VHF) radar system for station keeping with the AMPTE-IRM normally at a distance of a few hundred kilometers. [3]

Launch

AMPTE-UKS was launched with the two other satellites of the AMPTE program on 16 August 1984, at 16:48 UTC, from a Cape Canaveral launch pad by a Delta 3924 launch vehicle. [1] [2]

Experiments

3-D Electron Analyzer (6 eV-25 keV, 8-Sector, 5-seconds Averaged)

Electron distribution functions were measured using two hemispherical electrostatic analyzers with microchannel plate detectors. The instrument had several operating modes. In its primary mode, electron intensities were measured, in 1-seconds periods, in 24 energy channels covering the range 6 eV to 25 keV within 8 angular sectors spanning 180° relative to the spacecraft spin axis. Data from a complete 5-seconds UKS spin period were needed to measure the three-dimensional distribution function. The geometric factors of the sectors were within the range 0.4 to 1.0 mm2 (0.0016 sq in)-sr and the energy bandwidth, delta E/E, was 3%. [4]

3-D Ion Analyzer (10 eV-20 keV/Q, 12-Sector, 5-seconds Averaged)

The objective of this investigation was to study the three-dimensional ion distributions in the plasma clouds, the solar wind, the magnetosphere, and the boundaries between them and to measure these distributions with high time and angular resolutions. The instrument consisted of a pair of 270° spherical electrostatic energy analyzers with microchannel plate detectors that measured the three-dimensional energy/charge distribution of positive ions from 10 eV/Q to 20 keV/Q over the polar angle range 0 to 180° with respect to the spin axis of the spacecraft. A complete set of measurements was obtained every 5-seconds spin period. [5]

Particle Modulation Analyzer (1 Hz-1 MHz Fast Fourier Transform)

The instrument consisted of microprocessor-controlled counting and timing circuitry which used as input the particle arrival pulses from the electron and ion spectrometers on board the spacecraft. The instrument computed autocorrelation functions and Fast Fourier transforms of the particle modulations resulting from wave-particle interactions in the frequency range 1 Hz to 1 MHz with an average frequency resolution of 3%. [6]

Plasma Wave Spectrometer (100 Hz-3 MHz E, 100 Hz-60 KHz B)

The instrument consisted of an electric dipole antenna with 7 m (23 ft) separation between its sensors and a high permeability core coil to measure the magnetic component of the wave field. The electric component was measured up to 2 MHz and the magnetic component up to kHz. The signal processing equipment was composed of a stepped-frequency analyzer covering the range up to 130 kHz and four discrete filters with 10% bandwidths covering the range up to 2 MHz. A correlator (64 point auto) permitted study at higher frequency resolution. [7]

Triaxial Magnetometer (Dual Range 0.03 nT Accuracy)

The objective of this investigation was to study the magnetic fields in the near-Earth environment. The instrument consisted of a three-axis orthogonal fluxgate magnetometer with ring-core sensors. It was a refurbished ISEE-1 and ISEE-3 flight spare. One of the two possible ranges, ± 256 or 8192 nT, could be selected by ground command. The accuracy of the instrument was ± 1 nT per axis in the high range and ± 0.03 nT in the low range. [8]

End of mission

The spacecraft power supply failed on 15 January 1985. [3] [2]

See also

Related Research Articles

<i>Wind</i> (spacecraft) NASA probe to study solar wind, at L1 since 1995

The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.

<span class="mw-page-title-main">Explorer 52</span> NASA satellite of the Explorer program

Explorer 52, also known as Hawkeye-1, Injun-F, Neutral Point Explorer, IE-D, Ionospheric Explorer-D, was a NASA satellite launched on 3 June 1974, from Vandenberg Air Force Base on a Scout E-1 launch vehicle.

<span class="mw-page-title-main">Fast Auroral SnapshoT Explorer</span> NASA satellite of the Explorer program

The Fast Auroral SnapshoT Explorer was a NASA plasma physics satellite, and was the second spacecraft in the Small Explorer program (SMEX). It was launched on 21 August 1996, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The spacecraft was designed and built by NASA's Goddard Space Flight Center (GSFC). Flight operations were handled by GSFC for the first three years, and thereafter were transferred to the University of California, Berkeley's Space Sciences Laboratory.

<span class="mw-page-title-main">Explorer 33</span> NASA satellite of the Explorer program

Explorer 33, also known as IMP-D and AIMP-1, was a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.

Dynamics Explorer was a NASA mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two unmanned satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Explorer 18</span> NASA satellite of the Explorer program

Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.

<span class="mw-page-title-main">Explorer 14</span> NASA satellite of the Explorer program

Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">ISEE-2</span>

The ISEE-2 was an Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Explorer 28</span> NASA satellite of the Explorer program

Explorer 28, also called IMP-C, IMP-3 and Interplanetary Monitoring Platform-3, was a NASA satellite launched on 29 May 1965 to study space physics, and was the third spacecraft launched in the Interplanetary Monitoring Platform program. It was powered by chemical batteries and solar panels. There were 7 experiments on board, all devoted to particle studies. Performance was normal until late April 1967, when intermittent problems began. It stayed in contact until 12 May 1967, when contact was lost. The orbit decayed until it re-entered the atmosphere on 4 July 1968. The spacecraft design was similar to its predecessors Explorer 18 (IMP-A), launched in November 1963, and Explorer 21 (IMP-B), launched in October 1964, though this satellite was a few kilograms lighter. The successor Explorer 33 (IMP-D) began the use of a new design.

<span class="mw-page-title-main">Explorer 21</span> NASA satellite of the Explorer program

Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in October 1964. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.

<span class="mw-page-title-main">Explorer 40</span> NASA satellite of the Explorer program

Explorer 40, was a NASA magnetically aligned satellite launched simultaneously with Explorer 39 (AD-C) using a Scout B launch vehicle.

<span class="mw-page-title-main">Explorer 43</span> NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Explorer 45</span> NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

<span class="mw-page-title-main">Explorer 47</span> NASA satellite of the Explorer program

Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.

<span class="mw-page-title-main">Explorer 50</span> NASA satellite of the Explorer program

Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">AMPTE-CCE</span> NASA satellite of the Explorer program

AMPTE-Charge Composition Explorer, also called as AMPTE-CCE or Explorer 65, was a NASA satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

AMPTE-IRM, also called as AMPTE-Ion Release Module, was a Germany satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

References

  1. 1 2 "Launch Log". Jonathan's Space Report. 21 July 2021. Retrieved 26 November 2021.
  2. 1 2 3 "Trajectory: AMPTE-UKS (1984-088C)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  3. 1 2 3 4 "Display: AMPTE-UKS (1984-088C)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  4. "Experiment: 3-D Electron Analyzer (6 eV-25 keV, 8-Sector, 5-seconds Averaged)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  5. "Experiment: 3-D Ion Analyzer (10 eV-20 keV/Q, 12-Sector, 5-seconds Averaged)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  6. "Experiment: Particle Modulation Analyzer (1 Hz-1 MHz Fast Fourier Transform)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  7. "Experiment: Plasma Wave Spectrometer (100 Hz-3 MHz E, 100 Hz-60 KHz B)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  8. "Experiment: Triaxial Magnetometer (Dual Range 0.03 nT Accuracy)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svgThis article incorporates text from this source, which is in the public domain .