AMPTE-IRM

Last updated

AMPTE-IRM
NamesAMPTE-Ion Release Module
Mission type Magnetosphere research
Operator NASA / Germany
COSPAR ID 1984-088B OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 15200
Mission duration2 years (achieved)
Spacecraft properties
SpacecraftAMPTE-IRM
Spacecraft typeActive Magnetospheric Particle Tracer Explorers (AMPTE)
Bus AMPTE-Ion Release Module
Manufacturer Max Planck Institute for Extraterrestrial Physics
Launch mass705 kg (1,554 lb)
Power60 watts
Start of mission
Launch date16 August 1984, 14:48 UTC [1]
Rocket Delta 3924 (Delta 175)
Launch site Cape Canaveral, LC-17A
Contractor Douglas Aircraft Company
Entered service16 August 1984
End of mission
Last contact14 August 1986
Orbital parameters
Reference system Geocentric orbit [2]
Regime Highly elliptical orbit
Perigee altitude 1.09 RE
Apogee altitude 18.83 RE
Inclination 28.60°
Period 44.30 hours
Instruments
3-D Plasma Analyzer
Ion Release Experiment
Mass Separation Ion Spectrometer (MSIS)
Plasma Wave Spectrometer
Suprathermal Energy Ionic Charge Analyzer
Triaxial Fluxgate Magnetometer
Explorer program
  AMPTE-CCE (Explorer 65)
AMPTE-UKS  
 

AMPTE-IRM, also called as AMPTE-Ion Release Module, was a Germany satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE (Active Magnetospheric Particle Tracer Explorers) mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space. [3]

Contents

Mission

The AMPTE-IRM is one of the three components of the international space mission AMPTE, which also included AMPTE-CCE (Charge Composition Explorer), designed by NASA, and AMPTE-UKS (United Kingsom Subsatellite), provided by the United Kingdom. [3]

Spacecraft

The program consisted of three spacecraft: the AMPTE-CCE, which measured in the magnetosphere the ions released by the AMPTE-IRM; and the AMPTE-UKS, which used thrusters to keep station near the AMPTE-IRM to provide two-point local measurements. The AMPTE-IRM provided multiple ion releases in the solar wind, the magnetosheath, and the magnetotail, with in situ diagnostics of each. The AMPTE-IRM spacecraft was spin-stabilized at 15 rpm. Its spin axis was initially in the ecliptic plane, but later it was adjusted with magnetic torqueing to be at right angles to the ecliptic. The power system was a 60 watts solar array with redundant batteries. There was a redundant S-band telemetry and telecommand system. Telemetry rates could be chosen between 1 and 8 kbps. For injection into the final orbit, the AMPTE-IRM carried its own kick stage. In addition to the ion releases, the instruments on board the spacecraft monitored the ambient, magnetosphere, but with the data acquisition confined to the passes that could be tracked in real time from Germany. [3]

Launch

AMPTE-IRM was launched with the two other satellites of the AMPTE program on 16 August 1984, at 16:48 UTC, from a Cape Canaveral launch pad by a Delta 3924 launch vehicle. [1] [2]

Experiments

3-D Plasma Analyzer (30-channel, Electrons: 15 eV-30 keV; Ions: 20 eV/q-40 keV/q)

The main instrument consisted of two symmetrical quadrispherical electrostatic analyzers to measure the three-dimensional distributions of electrons and ions, respectively, over 4-pi-sr during every satellite spin period (4 seconds). The energy range covered was 15 eV/Q to 30 keV/Q in 30 channels. The angular resolution was 22.5°. Moments of the measured distributions were directly computed on board. An additional retarding-potential analyzer measured the flux of electrons between approximately 0 and 25 eV. [4]

Ion Release Experiment

The experiment consisted of eight lithium and eight barium canisters, which were injected from the AMPTE-IRM in pairs by ground command and ignited 10 minutes after separation from the spacecraft. Each of these was either totally lithium or totally barium. A pair of Li/Ba canisters produced a total of 2.E25/7.E24 Li/Ba atoms, respectively, which were subsequently ionized by solar radiation. Li releases in the solar wind, which were carried out in August/September 1984, were to be followed by an artificial comet release of Ba ions in the dawnside magnetosheath and a number of Ba and Li releases in the geomagnetic tail. In situ diagnostics by AMPTE-IRM and AMPTE-UKS and optical observations of the clouds from the ground were followed by tracing of the ions in the inner magnetosphere by AMPTE-CCE. [5]

Mass Separation Ion Spectrometer (MSIS) (H through Ba: 0.5 eV/q-14 keV/q)

The instrument consisted of a retarding-potential analyzer entrance section and a toroidal electrostatic energy-per-charge analyzer, followed by a quadrispherical electrostatic analyzer with superimposed radial magnetic field for mass-per-charge analysis. The energy range covered was approximately 0 to 12 (or 24) keV/Q, with adequate mass resolution to separate the Li and Ba tracer ions. Up to eight different ion species could be analyzed simultaneously. [6]

Plasma Wave Spectrometer (64 channel, E- and B-field, E-: 0.0-5.6 MHz; B-: 30 Hz-1.5 MHz)

The instrument used a 42 m (138 ft) tip-to-tip antenna to measure electric fields from DC to 5 MHz and two boom-mounted search coil magnetometers to measure magnetic fields from 30 Hz to 1 MHz. The signals were analyzed by a very low frequency VLF/MF 16-channel spectrum analyzer, three VLF narrow-band swept-frequency receivers, a 60-channel high frequency HF stepped-frequency receiver, and an analog wide-band receiver. [7]

Suprathermal Energy Ionic Charge Analyzer (H through Fe: 5-270 keV/q; electrons: 35-207 keV)

The main instrument consisted of a curved plate electrostatic energy-per-charge analyzer followed by a 12 cm (4.7 in) time-of-flight telescope with a thin carbon foil at the front and a solid-state detector at the rear, which measured ion velocity and residual energy. The energy-per-charge range was 10 to 300 keV/Q. The mass resolution, delta M/M, ranged from 0.25 to 0.12. The instrument package also contained an electron sensor for the energy range 35 to 220 keV, provided by University of California, Berkeley. [8]

Triaxial Fluxgate Magnetometer

The instrument was a three-axis fluxgate magnetometer mounted on a 2 m (6 ft 7 in) boom. It had two switchable ranges (± 4 microtesla, and ± 60 microtesla) with resolutions of 0.12 and 1.8 nT, respectively and was read out at 32, 16, 8, or 4 vector samples per second, depending on the T/M rate. Signals from each sensor were also fed into four band pass filters with 5.5, 11, 22, and 44-Hz center frequencies and were read out up to two times per second. [9]

End of mission

The spacecraft became inoperational on 14 August 1986. [3] [2]

See also

Related Research Articles

<i>Wind</i> (spacecraft) NASA probe to study solar wind, at L1 since 1995

The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.

<span class="mw-page-title-main">Explorer 52</span> NASA satellite of the Explorer program

Explorer 52, also known as Hawkeye-1, Injun-F, Neutral Point Explorer, IE-D, Ionospheric Explorer-D, was a NASA satellite launched on 3 June 1974, from Vandenberg Air Force Base on a Scout E-1 launch vehicle.

<span class="mw-page-title-main">Fast Auroral SnapshoT Explorer</span> NASA satellite of the Explorer program

The Fast Auroral SnapshoT Explorer was a NASA plasma physics satellite, and was the second spacecraft in the Small Explorer program (SMEX). It was launched on 21 August 1996, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The spacecraft was designed and built by NASA's Goddard Space Flight Center (GSFC). Flight operations were handled by GSFC for the first three years, and thereafter were transferred to the University of California, Berkeley's Space Sciences Laboratory.

<span class="mw-page-title-main">Explorer 18</span> NASA satellite of the Explorer program

Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.

<span class="mw-page-title-main">Explorer 14</span> NASA satellite of the Explorer program

Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">ISEE-2</span>

The ISEE-2 was an Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Explorer 28</span> NASA satellite of the Explorer program

Explorer 28, also called IMP-C, IMP-3 and Interplanetary Monitoring Platform-3, was a NASA satellite launched on 29 May 1965 to study space physics, and was the third spacecraft launched in the Interplanetary Monitoring Platform program. It was powered by chemical batteries and solar panels. There were 7 experiments on board, all devoted to particle studies. Performance was normal until late April 1967, when intermittent problems began. It stayed in contact until 12 May 1967, when contact was lost. The orbit decayed until it re-entered the atmosphere on 4 July 1968. The spacecraft design was similar to its predecessors Explorer 18 (IMP-A), launched in November 1963, and Explorer 21 (IMP-B), launched in October 1964, though this satellite was a few kilograms lighter. The successor Explorer 33 (IMP-D) began the use of a new design.

<span class="mw-page-title-main">Explorer 21</span> NASA satellite of the Explorer program

Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in November 1963. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.

<span class="mw-page-title-main">Explorer 34</span> NASA satellite of the Explorer program

Explorer 34, was a NASA satellite launched as part of Explorer program. Explorer 34 as launched on 24 May 1967 from Vandenberg Air Force Base, California, with Thor-Delta E1 launch vehicle. Explorer 34 was the fifth satellite launched as part of the Interplanetary Monitoring Platform program, but was known as "IMP-4" because the preceding launch was more specifically part of the "Anchored IMP" sub-program. The spacecraft was put into space between the launches of Explorer 33 in 1966 and Explorer 35 in July 1967, but the next satellite to use Explorer 34's general design was Explorer 41, which flew in 1969.

<span class="mw-page-title-main">Explorer 41</span> NASA satellite of the Explorer program

Explorer 41, also called as IMP-G and IMP-5, was a NASA satellite launched as part of Explorer program. Explorer 41 as launched on 21 June 1969 on Vandenberg AFB, California, with a Thor-Delta E1 launch vehicle. Explorer 41 was the seventh satellite launched as part of the overall Interplanetary Monitoring Platform series, though it received the post-launch designation "IMP-5" because two previous flights had used the "AIMP" designation instead. It was preceded by the second of those flights, Explorer 35, launched in July 1967. Its predecessor in the strict IMP series of launches was Explorer 34, launched in May 1967, which shared a similar design to Explorer 41. The next launch was of an IMP satellite was Explorer 43 in 1971.

<span class="mw-page-title-main">Explorer 43</span> NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Explorer 45</span> NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

<span class="mw-page-title-main">Explorer 47</span> NASA satellite of the Explorer program

Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.

<span class="mw-page-title-main">Explorer 50</span> NASA satellite of the Explorer program

Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">AMPTE-CCE</span> NASA satellite of the Explorer program

AMPTE-Charge Composition Explorer, also called as AMPTE-CCE or Explorer 65, was a NASA satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

AMPTE-UKS, also called as AMPTE-United Kingdom Subsatellite, was a United Kingdom satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

Escape and Plasma Acceleration and Dynamics Explorers (EscaPADE) is a planned spacecraft mission to Mars consisting of two spacecraft known as Blue and Gold. The mission, expected to launch in October 2024, is part of NASA's SIMPLEx program.

References

  1. 1 2 "Launch Log". Jonathan's Space Report. 21 July 2021. Retrieved 26 November 2021.
  2. 1 2 3 "Trajectory: AMPTE-IRM (1984-088B)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. 1 2 3 4 "Display: AMPTE-IRM (1984-088B)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "Experiment: 3-D Plasma Analyzer". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "Experiment: Ion Release Experiment". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. "Experiment: Mass Separation Ion Spectrometer (MSIS)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "Experiment: Plasma Wave Spectrometer". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. "Experiment: Suprathermal Energy Ionic Charge Analyzer". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. "Experiment: Triaxial Fluxgate Magnetometer". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .