AMPTE-CCE

Last updated

AMPTE-CEE
CCE AMPTE-1.jpg
AMPTE-CCE (Explorer 65) satellite
NamesExplorer 65
AMPTE-Charge Composition Explorer
Mission type Magnetosphere research
Operator NASA
COSPAR ID 1984-088A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 15199
Mission duration5 years (achieved)
Spacecraft properties
SpacecraftExplorer LXV
Spacecraft typeActive Magnetospheric Particle Tracer Explorers (AMPTE)
Bus AMPTE-CEE
Launch mass242 kg (534 lb)
Power140 watts
Start of mission
Launch date16 August 1984, 14:48 UTC [1]
Rocket Delta 3924 (Delta 175)
Launch site Cape Canaveral, LC-17A
Contractor Douglas Aircraft Company
Entered service16 August 1984
End of mission
Last contact12 July 1989
Orbital parameters
Reference system Geocentric orbit [2]
Regime Highly elliptical orbit
Perigee altitude 0.17 RE
Apogee altitude 8.79 RE
Inclination 4.8°
Period 16 hours
Instruments
CCE Magnetometer (MAG)
Charge-Energy-Mass Spectrometer (CHEM)
Hot Plasma Composition Experiment (HPCE)
Medium Energy Particle Analyzer (MEPA)
Plasma Wave Experiment (PWE)
Explorer program
  Solar Mesosphere Explorer (Explorer 64)
AMPTE-IRM  
 

AMPTE-Charge Composition Explorer, also called as AMPTE-CCE or Explorer 65, was a NASA satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE (Active Magnetospheric Particle Tracer Explorers) mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space. [3]

Contents

Mission

The AMPTE-CCE is one of the three components of the international space mission AMPTE, which also included AMPTE-IRM (Ion Release Module), designed by Germany, and AMPTE-UKS (United Kingdom Subsatellite), provided by the United Kingdom. [3]

Spacecraft

The mission consisted of three spacecraft: AMPTE-CCE; AMPTE-IRM, which provided multiple ion releases in the solar wind, the magnetosheath, and the magnetotail, with in situ diagnostics of each; and AMPTE-UKS, which uses thrusters to keep station near the AMPTE-IRM to provide two-point local measurements. The AMPTE-CCE (Charge Composition Explorer) spacecraft was instrumented to detect those lithium and barium tracer ions from the AMPTE-IRM releases that were transported into the magnetosphere within the AMPTE-CCE orbit. The spacecraft was spin-stabilized at 10 rpm, with its spin axis in the equatorial plane, and offset from the Earth-Sun line by about 20°. It could adjust attitude control with both magnetic torquing and cold gas thrusters. The AMPTE-CCE used a 2.E8-bit tape recorder and redundant 2.5-watts S-band transponders. The spacecraft battery was charged by a 140-watt solar array. [3]

Launch

AMPTE-CCE was launched with the two other satellites of the AMPTE program on 16 August 1984, at 16:48 UTC, from a Cape Canaveral launch pad by a Delta 3924 launch vehicle. [1] It was placed in an equatorial orbit of 1,100 × 50,000 km (680 × 31,070 mi) with an inclination of 4.8°. [2]

Instruments

Charge Composition Explorer was instrumented to detect those lithium and barium tracer ions from the IRM released that were transported into the magnetosphere within the CCE orbit. The spacecraft was spin-stabilized at 10 rpm, with its spin axis in the equatorial plane, and offset from the Earth-Sun line by about 20°. It could adjust attitude with both magnetic torquing and cold gas thrusters. [3]

The satellite carries 5 scientific instruments that are used to measure the composition of the particles in the magnetosphere throughout their energy spectrum and the changes that affect them with the objective of determining the main processes governing their excitation, their displacement and their disappearance. CCE must also detect the lithium and barium ions released by the MRI satellite and transported in the magnetosphere: [4]

Experiments

CCE Magnetometer (MAG)

The instrument was a triaxial fluxgate magnetometer mounted on a 2.4 m (7 ft 10 in) boom. It had seven automatically switchable ranges (from ± 16 nT to ± 65,536 nT) with resolution commensurate with a 13-bit analog-to-digital converter, and was read out at 8.6 vector samples/second. The signals from two sensors (one parallel to the spin axis and one orthogonal) were also fed into 5-50 Hz bandpass channels that were read out every 5 seconds. [5] [6]

Charge-Energy-Mass Spectrometer (CHEM)

The instrument consisted of an entrance collimator and electrostatic analyzer section followed by a time-of-flight and total-energy-measurement section floating at a 30 kV acceleration potential. The energy range covered was from 1 to 300 keV/Q, with a geometric factor of 2.E-3 cm2-sr and 32-sector angular resolution. Energy resolution was 5 to 18%, and all charge states and isotopes of Hydrogen (H) and Helium (He), the charge states of Lithium (Li), and the major elements and charge states up to and including Iron (Fe) were resolved. [7] [8]

Hot Plasma Composition Experiment (HPCE)

This instrument consisted of an entrance collimator and retarding potential analyzer, a curved-plate electrostatic energy analyzer, and a combined electrostatic-magnetic mass analyzer in series. The energy range covered was approximately 0 to 17 keV/Q, with a geometric factor ranging from 0.01 to 0.05 cm2-sr, an energy resolution from 6 to 60%, and an M/Q resolution of 10%. This instrument cleanly separated Li+ and Ba+ tracer ions from the background. It was nearly identical to one flown on Dynamics Explorer 1 by the same group of investigators. An additional set of eight spectrometers containing permanent bending magnets and channeltrons measured electrons in eight channels from 50 eV to 25 keV. [9] [10]

Medium Energy Particle Analyzer (MEPA)

The instrument consisted of a collimator and an electron sweeping magnet followed by a 10 cm (3.9 in) time of flight (TOF) telescope with thin foils at the front and midpoint and a solid-state detector at the rear. Incident ion TOF was measured from the front foil to the back detector and from the center foil to the back detector, and energy was measured in the back detector. The dual TOF measurement and very fast energy channel processing gave high immunity to accidental events, and allowed the instrument to measure the composition and spectra of both common species and tracer ions over a species-dependent energy range of >10 keV/nucleon to 6 MeV/nucleon, with a geometric factor of 1.E-2 cm2-sr and 32-sector angular resolution. [11] [12]

Plasma Wave Experiment (PWE)

The instrument consisted of a balanced electric dipole with an effective length of 70 cm (28 in) and six bandpass channels covering the range from 5 Hz to 178 kHz. The highest five channels were sampled every 0.6 seconds and the lowest (5–50 Hz) channel was sampled every 20 seconds. The instrument was the flight spare of the Pioneer Venus Electric Field Detector, with two additional filters added. [13] [14]

End of mission

The AMPTE-CCE encountered command module/power supply problems since the beginning of 1989 and failed as of 12 July 1989. [3]

See also

Related Research Articles

<span class="mw-page-title-main">IMAGE (spacecraft)</span> NASA satellite of the Explorer program

IMAGE is a NASA Medium Explorer mission that studied the global response of the Earth's magnetosphere to changes in the solar wind. It was believed lost but as of August 2018 might be recoverable. It was launched 25 March 2000, at 20:34:43.929 UTC, by a Delta II launch vehicle from Vandenberg Air Force Base on a two-year mission. Almost six years later, it unexpectedly ceased operations in December 2005 during its extended mission and was declared lost. The spacecraft was part of NASA's Sun-Earth Connections Program, and its data has been used in over 400 research articles published in peer-reviewed journals. It had special cameras that provided various breakthroughs in understanding the dynamics of plasma around the Earth. The principal investigator was Jim Burch of the Southwest Research Institute.

<i>Wind</i> (spacecraft) NASA probe to study solar wind, at L1 since 1995

The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.

<span class="mw-page-title-main">Fast Auroral SnapshoT Explorer</span> NASA satellite of the Explorer program

The Fast Auroral SnapshoT Explorer was a NASA plasma physics satellite, and was the second spacecraft in the Small Explorer program (SMEX). It was launched on 21 August 1996, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The spacecraft was designed and built by NASA's Goddard Space Flight Center (GSFC). Flight operations were handled by GSFC for the first three years, and thereafter were transferred to the University of California, Berkeley's Space Sciences Laboratory.

<span class="mw-page-title-main">Solar Anomalous and Magnetospheric Particle Explorer</span> NASA satellite of the Explorer program

The Solar Anomalous and Magnetospheric Particle Explorer was a NASA solar and magnetospheric observatory and was the first spacecraft in the Small Explorer program. It was launched into low Earth orbit on 3 July 1992, from Vandenberg Air Force Base aboard a Scout G-1 launch vehicle. SAMPEX was an international collaboration between NASA and the Max Planck Institute for Extraterrestrial Physics of Germany. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) is the first of a series of spacecraft that was launched under the Small Explorer (SMEX) program for low-cost spacecraft.

<span class="mw-page-title-main">Explorer 18</span> NASA satellite of the Explorer program

Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.

<span class="mw-page-title-main">Energetic neutral atom</span> Technology to create global images of otherwise invisible phenomena

Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.

<span class="mw-page-title-main">Explorer 14</span> NASA satellite of the Explorer program

Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">ISEE-2</span>

The ISEE-2 was an Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Interstellar Mapping and Acceleration Probe</span> Planned NASA heliophysics mission

The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in late April to late May 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

<span class="mw-page-title-main">Explorer 21</span> NASA satellite of the Explorer program

Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in November 1963. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.

<span class="mw-page-title-main">Explorer 34</span> NASA satellite of the Explorer program

Explorer 34, was a NASA satellite launched as part of Explorer program. Explorer 34 as launched on 24 May 1967 from Vandenberg Air Force Base, California, with Thor-Delta E1 launch vehicle. Explorer 34 was the fifth satellite launched as part of the Interplanetary Monitoring Platform program, but was known as "IMP-4" because the preceding launch was more specifically part of the "Anchored IMP" sub-program. The spacecraft was put into space between the launches of Explorer 33 in 1966 and Explorer 35 in July 1967, but the next satellite to use Explorer 34's general design was Explorer 41, which flew in 1969.

<span class="mw-page-title-main">Explorer 43</span> NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Explorer 45</span> NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

<span class="mw-page-title-main">Explorer 47</span> NASA satellite of the Explorer program

Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.

<span class="mw-page-title-main">Explorer 50</span> NASA satellite of the Explorer program

Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

AMPTE-IRM, also called as AMPTE-Ion Release Module, was a Germany satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

AMPTE-UKS, also called AMPTE-United Kingdom Subsatellite, was a United Kingdom satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

References

  1. 1 2 "Launch Log". Jonathan's Space Report. 21 July 2021. Retrieved 25 November 2021.
  2. 1 2 "Trajectory: AMPTE-CCE (1984-088A)". NASA. 28 October 2021. Retrieved 25 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. 1 2 3 4 5 "Display: AMPTE-CCE (1984-088A)". NASA. 28 October 2021. Retrieved 25 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "SAMPEX - Introduction". University of Colorado. Retrieved 22 June 2018.
  5. "Experiment: CCE Magnetometer (MAG)". NASA. 28 October 2021. Retrieved 25 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. "CCE Magnetometer (MAG)". Johns Hopkins University - APL. Retrieved 26 November 2021.
  7. "Experiment: Charge-Energy-Mass Spectrometer". NASA. 28 October 2021. Retrieved 25 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. "Charge-Energy-Mass Spectrometer (CHEM)". Johns Hopkins University - APL. Retrieved 26 November 2021.
  9. "Experiment: Hot Plasma Composition Experiment (HPCE)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. "Hot Plasma Composition Experiment (HPCE)". Johns Hopkins University - APL. Retrieved 26 November 2021.
  11. "Experiment: Medium Energy Particle Analyzer (MEPA)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "Medium-Energy Particle Analyzer (MEPA)". Johns Hopkins University - APL. Retrieved 22 June 2018.
  13. "Experiment: Plasma Wave Experiment (PWE)". NASA. 28 October 2021. Retrieved 26 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  14. "Plasma Wave Experiment (PWE)". Johns Hopkins University - APL. Retrieved 26 November 2021.