Bicosoecida

Last updated

Bicosoecida
Cafeteria roenbergensis FENCHEL and D J PATTERSON schematic drawing.svg
Cafeteria roenbergensis , a non-loricate bicosoecid
Scientific classification
Domain:
(unranked):
SAR
Superphylum:
Class:
Subclass:
Superorder:
Order:
Bicosoecida

Grassé, 1926 [1] emend. Karpov, 1998 [2] Honigberg et al., 1964, Zhukov, 1978, Karpov, 1998, 2000
Families
Synonyms

Bicosoecida (ICZN) or Bicosoecales/Bicoecea (ICBN) is an order of Bikosea, a small group of unicellular flagellates, included among the stramenopiles. Informally known as bicosoecids, they are a small group of unicellular flagellates. The cells are free-living, with no chloroplasts, and in some genera are encased in a lorica.

Contents

The name of the type genus Bicosoeca described by James-Clark in 1866 is derived from Greek roots (bikos, vase, bowl, plus oekein, inhabit). The philologically preferable compound would be Bicoeca, as "corrected" by Stein in 1878 and followed by most subsequent authors. However, according to the ICBN and ICZN, the original spelling of the name cannot be considered incorrect and it must be used in its original form.

The group was formerly considered to be related to the Chrysophyceae. [7]

Some authors use the vernacular term "bicosoecid" (or "bicoecid") in a narrower sense, only for Bicosoeca, applying "bicoeceans" to Bicosoeca and related groups like Cafeteria . [8]

With the advent of using molecular phylogenies to resolve relationships of many eukaryotes the original circumscription of bicosoecids has been greatly expanded upon to include other orders and the rank has changed from an order to a class. [9]

Classification

Related Research Articles

<span class="mw-page-title-main">Euglenozoa</span> Phylum of protozoans

Euglenozoa are a large group of flagellate Discoba. They include a variety of common free-living species, as well as a few important parasites, some of which infect humans. Euglenozoa are represented by four major groups, i.e., Kinetoplastea, Diplonemea, Euglenida, and Symbiontida. Euglenozoa are unicellular, mostly around 15–40 μm (0.00059–0.00157 in) in size, although some euglenids get up to 500 μm (0.020 in) long.

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Synurid</span> Group of algae

The synurids are a small group of heterokont algae, found mostly in freshwater environments, characterized by cells covered in silica scales.

<span class="mw-page-title-main">Axodine</span> Class of single-celled organisms

The axodines are a group of unicellular stramenopiles that includes silicoflagellate and rhizochromulinid algae, actinomonad heterotrophic flagellates and actinophryid heliozoa. Alternative classifications treat the dictyochophytes as heterokont algae, or as Chrysophyceae. Other overlapping taxonomic concepts include the Actinochrysophyceae, Actinochrysea or Dictyochophyceae sensu lato. The grouping was proposed on the basis of ultrastructural similarities, and is consistent with subsequent molecular comparisons.

<span class="mw-page-title-main">Golden algae</span> Class of algae

The Chrysophyceae, usually called chrysophytes, chrysomonads, golden-brown algae or golden algae, are a large group of algae, found mostly in freshwater. Golden algae is also commonly used to refer to a single species, Prymnesium parvum, which causes fish kills.

<span class="mw-page-title-main">Labyrinthulomycetes</span> Class of protists that produce a filamentous network

Labyrinthulomycetes (ICBN) or Labyrinthulea (ICZN) is a class of protists that produce a network of filaments or tubes, which serve as tracks for the cells to glide along and absorb nutrients for them. The two main groups are the labyrinthulids and thraustochytrids. They are mostly marine, commonly found as parasites on algae and seagrasses or as decomposers on dead plant material. They also include some parasites of marine invertebrates and mixotrophic species that live in a symbiotic relationship with zoochlorella.

<span class="mw-page-title-main">Yellow-green algae</span> Class of algae

Yellow-green algae or the Xanthophyceae (xanthophytes) are an important group of heterokont algae. Most live in fresh water, but some are found in marine and soil habitats. They vary from single-celled flagellates to simple colonial and filamentous forms. Xanthophyte chloroplasts contain the photosynthetic pigments chlorophyll a, chlorophyll c, β-carotene, and the carotenoid diadinoxanthin. Unlike other Stramenopiles (heterokonts), their chloroplasts do not contain fucoxanthin, which accounts for their lighter colour. Their storage polysaccharide is chrysolaminarin. Xanthophyte cell walls are produced of cellulose and hemicellulose. They appear to be the closest relatives of the brown algae.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

<i>Phalansterium</i> Genus of single-celled organisms

Phalansterium is a genus of single-celled flagellated organisms comprising several species, which form colonies. Phalansterium produces tetraspores.

<span class="mw-page-title-main">Bigyra</span> Phylum of single-celled organisms

Bigyra is a phylum of microscopic eukaryotes that are found at the base of the Stramenopiles clade. It includes three well-known heterotrophic groups Bicosoecida, Opalinata and Labyrinthulomycetes, as well as several small clades initially discovered through environmental DNA samples: Nanomonadea, Placididea, Opalomonadea and Eogyrea. The classification of Bigyra has changed several times since its origin, and its monophyly remains unresolved.

Goniomonas is a genus of Cryptomonads and contains five species. It is a genus of single-celled eukaryotes, including both freshwater and marine species. It lacks plastids, which is very unusual among all of the Cryptophyte genera. It may reflect one of only a small number of times that the Cryptophytes evolved into freshwater habitats. Goniomonas seems to have a number of freshwater relatives which have not yet been cultured and named.

<span class="mw-page-title-main">Bodonida</span> Order of micro-organisms

Bodonida is an order of kinetoplastid flagellate excavates. It contains the genera Bodo and Rhynchomonas, relatives to the parasitic trypanosomes. This order also contains the colonial genus Cephalothamnium.

Rictus is a genus of Bikosea, a small group of unicellular flagellates, included among the heterokonts. The only species in the genus is Rictus lutensis.

Nanum is a genus of bicosoecids, a small group of unicellular flagellates, included among the heterokonts. It includes the sole species Nanum amicum, previously known as Nanos amicus but modified because the name Nanos was already occupied by a species of beetle.

Pseudodendromonadida is a subclass of bicosoecids, a small group of unicellular flagellates, included among the heterokonts.

Colponema is a genus of single-celled flagellates that feed on eukaryotes in aquatic environments and soil. The genus contains 6 known species and has not been thoroughly studied. Colponema has two flagella which originate just below the anterior end of the cell. One extends forwards and the other runs through a deep groove in the surface and extends backwards. Colponema is a predator that feeds on smaller flagellates using its ventral groove. Like many other alveolates, they possess trichocysts, tubular mitochondrial cristae, and alveoli. It has been recently proposed that Colponema may be the sister group to all other alveolates. The genus could help us understand the origin of alveolates and shed light on features that are ancestral to all eukaryotes.

<span class="mw-page-title-main">Ultrastructural identity</span>

Ultrastructural identity is a concept in biology. It asserts that evolutionary lineages of eukaryotes in general and protists in particular can be distinguished by complements and arrangements of cellular organelles. These ultrastructural components can be visualized by electron microscopy.

Postgaardia is a proposed basal clade of flagellate Euglenozoa, following Thomas Cavalier-Smith. As of April 2023, the Interim Register of Marine and Nonmarine Genera treats the group as a subphylum. A 2021 review of Euglenozoa places Cavalier-Smith's proposed members of Postgaardia in the class Symbiontida. As Euglenozoans may be basal eukaryotes, the Postgaardia may be key to studying the evolution of Eukaryotes, including the incorporation of eukaryotic traits such as the incorporation of alphaproteobacterial mitochondrial endosymbionts.

<span class="mw-page-title-main">Gyrista</span> Phylum of eukaryotic organisms

Gyrista is a phylum of heterokont protists containing three diverse groups: the mostly photosynthetic Ochrophyta, the parasitic Pseudofungi, and the recently described group of nanoflagellates known as Bigyromonada. Members of this phylum are characterized by the presence of a helix or a double helix/ring system in the ciliary transition region.

Commation eposianum is a species of heterotrophic protists discovered in 1993 in Antarctic waters. It is one of two species in the Commatiida, an order of stramenopiles closely related to actinophryids, a group of heliozoan protists, and to raphidophytes, a group of algae.

References

  1. Grassé, P.-P. Contribution à l'étude des flagellés parasites. Archives de zoologie expérimentale et générale, t. 65, 1926, pages 345-602
  2. Ultrastructure and 18S rRNA gene sequence of a small heterotrophic flagellate Siluania monomastiga gen. et sp. nov. (Bicosoecida). S. A. Karpov, R. Kersanach, D. M. Williams - European Journal of Protistology, 1998
  3. Grassé, P.-P. Contribution à l'étude des flagellés parasites. Archives de zoologie expérimentale et générale, t. 65, 1926, pp. 345–602 [576], disponible at Gallica.
  4. Grassé, P.-P. & Deflandre, G . (1952). Ordre des Bicoecidea. In: Grassé, P.-P. (Ed.). Traité de Zoologie . Vol. 1, fasc. 1. Phylogénie. Protozoaries: Generalités, Flagellés. Masson et Cie, Paris. 599-601.
  5. Kristiansen, Jørgen (1972). "Structure and occurrence of Bicoeca crystallina, with remarks on the taxonomic position of the Bicoecales". British Phycological Journal. 7 (1): 1–12. doi: 10.1080/00071617200650011 .
  6. Loeblich III, Alfred R. & Loeblich, Laurel Ann. 1979. Division Chrysophyta, pp. 411–423. In: CRC Handbook of Microbiology, 2nd ed., vol. 2, Fungi, Algae, Protozoa, and Viruses, ed. by A. I.Laskin and H. A. Lechevalier, CRC Press, Inc., West Palm Beach, FL.
  7. Hibberd, David J. (1978). "Bicosoeca accreta sp. nov., a flagellate accumulating extraneous silica fragments". British Phycological Journal. 13 (2): 161–166. doi:10.1080/00071617800650201.
  8. Cavalier-Smith, T; Chao, E. E. (2006). "Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista)". Journal of Molecular Evolution. 62 (4): 388–420. Bibcode:2006JMolE..62..388C. doi:10.1007/s00239-004-0353-8. PMID   16557340. S2CID   29567514. Supplementary material .
  9. Cavalier-Smith, T; Scoble, J. M. (2013). "Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes". European Journal of Protistology. 49 (3): 328–353. doi:10.1016/j.ejop.2012.09.002. PMID   23219323.

Bibliography