CTBP2

Last updated
CTBP2
Protein CTBP2 PDB 2ome.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CTBP2 , C-terminal binding protein 2
External IDs OMIM: 602619 MGI: 1201686 HomoloGene: 75187 GeneCards: CTBP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001170744
NM_009980
NM_001347623

RefSeq (protein)

NP_001164215
NP_001334552
NP_034110

Location (UCSC) Chr 10: 124.98 – 125.16 Mb Chr 7: 132.99 – 133.12 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

C-terminal-binding protein 2 also known as CtBP2 is a protein that in humans is encoded by the CTBP2 gene. [5] [6] [7]

Function

The CtBPs - CtBP1 and CtBP2 in mammals - are among the best characterized transcriptional corepressors. [8] They typically turn their target genes off. They do this by binding to sequence-specific DNA-binding proteins that carry a short motif of the general form Proline-Isoleucine-Aspartate-Leucine-Serine (the PIDLS motif). They then recruit histone modifying enzymes, histone deacetylases, histone methylases and histone demethylases. These enzymes are thought to work together to remove activating and add repressive histone marks. For example, histone deacetylase 1 (HDAC1) and HDAC2 can remove the activating mark histone 3 acetyl lysine 9 (H3K9Ac), then the histone methylase G9a can add methyl groups, while the histone demethylase lysine specific demethylase 1 (LSD1) can remove the activating mark H3K4me. [9]

The CtBPs bind to many different DNA-binding proteins and also bind to co-repressors that are themselves bound to DNA-binding proteins, such as Friend of GATA (Fog). [10] CtBPs can also dimerize and multimerize to bridge larger transcriptional complexes. They appear to be primarily scaffold proteins that allow the assembly of gene repression complexes.

One interesting aspect of CtBPs is their ability to bind to NADH and to a lesser extent NAD+. It has been proposed that this will enable them to sense the metabolic status of the cell and to regulate genes in response to changes in the NADH/NAD+ ratio. Accordingly, CtBPs have been found to be important in fat biology, binding to key proteins such as PRDM16, NRIP, and FOG2. [11]

The full functional roles of CtBP proteins in mammals have been difficult to evaluate because of partial redundancy between CtBP1 and CtBP2. [12] Similarly, the early lethality of the CtBP2 knockout and of double knockout mice has precluded detailed analysis of the cellular effects of deleting these proteins. Important results have emerged from model organisms where there is only a single CtBP gene. In Drosophila CtBP is involved in development and in circadian rhythms. [13] In the worm C. elegans CtBP is involved in life span. [14] Both circadian rhythms and life span appear to be linked to metabolism supporting the role for CtBPs in metabolic sensing.

The mammalian CtBP2 gene produces alternative transcripts encoding two distinct proteins. In addition to the transcriptional repressor (corepressor) discussed above, there is a longer isoform that is a major component of specialized synapses known as synaptic ribbons. Both proteins contain a NAD+ binding domain similar to NAD+-dependent 2-hydroxyacid dehydrogenases. A portion of the 3'-untranslated region was used to map this gene to chromosome 21q21.3; however, it was noted that similar loci elsewhere in the genome are likely. Blast analysis shows that this gene is present on chromosome 10. [7]

Alternative Promoter Usage

In the vertebrate retina, the CtBP2 gene is transcribed from alternative promoters during retinal development yielding the CTBP2 transcriptional coregulator as well as the larger ribbon synapse scaffolding protein RIBEYE. [15] The multi use functionality of the CtBP2 locus appears to be conserved between avian and primate retinae with production of the RIBEYE mRNA being developmentally delayed by an epigenetic silencing mechanism. [16] In the developing human retina, transcription of the RIBEYE mRNA isoform is epigenetically regulated by DNA methylation. DNA sequences comprising the proximal RIBEYE promoter are enriched for DNA methylation and delay transcription of this isoform, possibly by inhibiting binding of the Cone-rod homeobox (CRX) transcription factor. [16] Global transcript analysis of human pluripotent stem cell (hPSC)-derived 3D retinal organoids demonstrates early and persistent expression of the CTPB2 isoform followed by delayed RIBEYE expression in the developing human eye. [17]

Interactions

CTBP2 has been shown to interact with:

Related Research Articles

In molecular genetics, the Krüppel-like family of transcription factors (KLFs) are a set of eukaryotic C2H2 zinc finger DNA-binding proteins that regulate gene expression. This family has been expanded to also include the Sp transcription factor and related proteins, forming the Sp/KLF family.

In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. Transcription coregulators that activate gene transcription are referred to as coactivators while those that repress are known as corepressors. The mechanism of action of transcription coregulators is to modify chromatin structure and thereby make the associated DNA more or less accessible to transcription. In humans several dozen to several hundred coregulators are known, depending on the level of confidence with which the characterisation of a protein as a coregulator can be made. One class of transcription coregulators modifies chromatin structure through covalent modification of histones. A second ATP dependent class modifies the conformation of chromatin.

<span class="mw-page-title-main">HDAC1</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.

<span class="mw-page-title-main">Nuclear receptor co-repressor 1</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor co-repressor 1 also known as thyroid-hormone- and retinoic-acid-receptor-associated co-repressor 1 (TRAC-1) is a protein that in humans is encoded by the NCOR1 gene.

<span class="mw-page-title-main">Corepressor</span> Molecule that represses the expression of genes

In genetics and molecular biology, a corepressor is a molecule that represses the expression of genes. In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, but instead indirectly regulates gene expression by binding to repressors.

<span class="mw-page-title-main">SIN3A</span> Protein-coding gene in the species Homo sapiens

Paired amphipathic helix protein Sin3a is a protein that in humans is encoded by the SIN3A gene.

<span class="mw-page-title-main">Zinc finger and BTB domain-containing protein 16</span> Protein found in humans

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.

<span class="mw-page-title-main">HDAC4</span>

Histone deacetylase 4, also known as HDAC4, is a protein that in humans is encoded by the HDAC4 gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">ZEB1</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 1 is a protein that in humans is encoded by the ZEB1 gene.

<span class="mw-page-title-main">MECOM</span> Protein-coding gene in the species Homo sapiens

MDS1 and EVI1 complex locus protein EVI1 (MECOM) also known as ecotropic virus integration site 1 protein homolog (EVI-1) or positive regulatory domain zinc finger protein 3 (PRDM3) is a protein that in humans is encoded by the MECOM gene. EVI1 was first identified as a common retroviral integration site in AKXD murine myeloid tumors. It has since been identified in a plethora of other organisms, and seems to play a relatively conserved developmental role in embryogenesis. EVI1 is a nuclear transcription factor involved in many signaling pathways for both coexpression and coactivation of cell cycle genes.

<span class="mw-page-title-main">DMAP1</span> Protein-coding gene in the species Homo sapiens

DNA methyltransferase 1-associated protein 1 is an enzyme that in humans is encoded by the DMAP1 gene.

<span class="mw-page-title-main">RBBP8</span> Protein-coding gene in the species Homo sapiens

Retinoblastoma-binding protein 8 is a protein that in humans is encoded by the RBBP8 gene.

<span class="mw-page-title-main">KLF12</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 12 is a protein that in humans is encoded by the KLF12 gene.

<span class="mw-page-title-main">ZFPM2</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein ZFPM2, i.e. zinc finger protein, FOG family member 2, but also termed Friend of GATA2, Friend of GATA-2, FOG2, or FOG-2, is a protein that in humans is encoded by the ZFPM2 and in mice by the Zfpm2 gene.

<span class="mw-page-title-main">KLF8</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 8 is a protein that in humans is encoded by the KLF8 gene. KLF8 belongs to the family of KLF protein. KLF8 is activated by KLF1 along with KLF3 while KLF3 represses KLF8.

<span class="mw-page-title-main">ZNF366</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 366, also known as DC-SCRIPT, is a protein that in humans is encoded by the ZNF366 gene. The ZNF366 gene was first identified in a DNA comparison study between 85 kb of Fugu rubripes sequence containing 17 genes with its homologous loci in the human draft genome.

<span class="mw-page-title-main">KLF3</span> Protein-coding gene in the species Homo sapiens

Krüppel-like factor 3 is a protein that in humans is encoded by the KLF3 gene.

Merlin Crossley, is an Australian molecular biologist, university teacher and administrator. In 2016, he was appointed as Deputy Vice-Chancellor (Academic) at the University of New South Wales.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000175029 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030970 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Turner J, Crossley M (September 1998). "Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators". EMBO J. 17 (17): 5129–40. doi:10.1093/emboj/17.17.5129. PMC   1170841 . PMID   9724649.
  6. Chinnadurai G (February 2002). "CtBP, an unconventional transcriptional corepressor in development and oncogenesis". Mol. Cell. 9 (2): 213–24. doi: 10.1016/S1097-2765(02)00443-4 . PMID   11864595.
  7. 1 2 "Entrez Gene: CTBP2 C-terminal binding protein 2".
  8. Turner J, Crossley M (August 2001). "The CtBP family: enigmatic and enzymatic transcriptional co-repressors". BioEssays. 23 (8): 683–90. doi: 10.1002/bies.1097 . PMID   11494316. S2CID   22273095.
  9. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (December 2004). "Histone demethylation mediated by the nuclear amine oxidase homolog LSD1". Cell. 119 (7): 941–53. doi: 10.1016/j.cell.2004.12.012 . PMID   15620353. S2CID   10847230.
  10. Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M (May 1999). "Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers". EMBO J. 18 (10): 2812–22. doi:10.1093/emboj/18.10.2812. PMC   1171362 . PMID   10329627.
  11. Jack BH, Pearson RC, Crossley M (May 2011). "C-terminal binding protein: A metabolic sensor implicated in regulating adipogenesis". Int. J. Biochem. Cell Biol. 43 (5): 693–6. doi:10.1016/j.biocel.2011.01.017. PMID   21281737.
  12. Hildebrand JD, Soriano P (August 2002). "Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development". Mol. Cell. Biol. 22 (15): 5296–307. doi:10.1128/mcb.22.15.5296-5307.2002. PMC   133942 . PMID   12101226.
  13. Itoh TQ, Matsumoto A, Tanimura T (2013). "C-terminal binding protein (CtBP) activates the expression of E-box clock genes with CLOCK/CYCLE in Drosophila". PLOS ONE. 8 (4): e63113. Bibcode:2013PLoSO...863113I. doi: 10.1371/journal.pone.0063113 . PMC   3640014 . PMID   23646183.
  14. Chen S, Whetstine JR, Ghosh S, Hanover JA, Gali RR, Grosu P, Shi Y (February 2009). "The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span". Proc. Natl. Acad. Sci. U.S.A. 106 (5): 1496–501. Bibcode:2009PNAS..106.1496C. doi: 10.1073/pnas.0802674106 . PMC   2635826 . PMID   19164523.
  15. Schmitz F, Konigstorfer A, and Sudhof TC (2000). "RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function". Neuron. 28 (3): 857–872. doi: 10.1016/s0896-6273(00)00159-8 . PMID   11163272.
  16. 1 2 Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones M, Zack, Enke RA, Wahlin KJ (January 2022). "Temporal and isoform-specific expression of CTBP2 is evolutionarily conserved between the developing chick and human retina". Front. Mol. Neurosci. 14: 773356. doi: 10.3389/fnmol.2021.773356 . PMC   8793361 . PMID   35095414.
  17. Agarwal D, Kuhns R, Dimitriou C, Barlow E, Wahlin KJ, Enke RA (December 2022). "Bulk RNA sequencing analysis of developing human induced pluripotent stem cell-derived retinal organoids". Sci. Data. 9 (1): 759. doi: 10.1038/s41597-022-01853-x . PMC   9734101 . PMID   36494376.
  18. 1 2 Turner J, Nicholas H, Bishop D, Matthews JM, Crossley M (2003). "The LIM protein FHL3 binds basic Krüppel-like factor/Krüppel-like factor 3 and its co-repressor C-terminal-binding protein 2". J. Biol. Chem. 278 (15): 12786–95. doi: 10.1074/jbc.M300587200 . PMID   12556451.
  19. van Vliet J, Turner J, Crossley M (2000). "Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription". Nucleic Acids Res. 28 (9): 1955–62. doi:10.1093/nar/28.9.1955. PMC   103308 . PMID   10756197.
  20. Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP (2003). "Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription" (PDF). Curr. Biol. 13 (14): 1234–9. Bibcode:2003CBio...13.1234M. doi:10.1016/S0960-9822(03)00454-8. PMID   12867035. S2CID   2451241.
  21. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  22. Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Res. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC   390375 . PMID   15060175.
  23. Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C (2001). "SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter". Nucleic Acids Res. 29 (16): 3347–55. doi:10.1093/nar/29.16.3347. PMC   55854 . PMID   11504872.
  24. Holmes M, Turner J, Fox A, Chisholm O, Crossley M, Chong B (1999). "hFOG-2, a novel zinc finger protein, binds the co-repressor mCtBP2 and modulates GATA-mediated activation". J. Biol. Chem. 274 (33): 23491–8. doi: 10.1074/jbc.274.33.23491 . PMID   10438528.

Further reading