Ribbon synapse

Last updated
Ribbon synapse
Details
Function Synapse
Identifiers
Latin synapsis fasciolaris
TH H2.00.06.2.00024
Anatomical terms of microanatomy

The ribbon synapse is a type of neuronal synapse characterized by the presence of an electron-dense structure, the synaptic ribbon, that holds vesicles close to the active zone. [1] It is characterized by a tight vesicle-calcium channel coupling [2] [3] that promotes rapid neurotransmitter release and sustained signal transmission. Ribbon synapses undergo a cycle of exocytosis and endocytosis in response to graded changes of membrane potential. It has been proposed that most ribbon synapses undergo a special type of exocytosis based on coordinated multivesicular release. [4] [5] [6] This interpretation has recently been questioned at the inner hair cell ribbon synapse, where it has been instead proposed that exocytosis is described by uniquantal (i.e., univesicular) release shaped by a flickering vesicle fusion pore. [7]

Contents

These unique features specialize the ribbon synapse to enable extremely fast, precise and sustained neurotransmission, which is critical for the perception of complex senses such as vision and hearing. Ribbon synapses are found in retinal photoreceptor cells, vestibular organ receptors, cochlear hair cells, retinal bipolar cells, and pinealocytes.

The synaptic ribbon is a unique structure at the active zone of the synapse. It is positioned several nanometers away from the pre-synaptic membrane and tethers 100 or more synaptic vesicles. [8] Each pre-synaptic cell can have from 10 to 100 ribbons tethered at the membrane, or a total number of 1000–10000 vesicles in close proximity to active zones. [9] The ribbon synapse was first identified in the retina as a thin, ribbon-like presynaptic projection surrounded by a halo of vesicles [10] using transmission electron microscopy in the 1950s, as the technique was gaining mainstream usage.

Structure

Microscopic

The photoreceptor ribbon synapse is around 30 nm in thickness. It sticks out into the cytoplasm around 200-1000 nm and anchors along its base to the arciform density which is an electron dense structure that is anchored to the presynaptic membrane. The arciform density is located within the synaptic ridge, a small evagination of the presynaptic membrane. Hair cells lack an arciform density so the anchor of this ribbon is considered to be invisible by electron microscope. [11] The ribbon's surface has small particles that are around 5 nm wide where the synaptic vesicles tether densely via fine protein filaments. There are multiple filaments per vesicle. There are also voltage gated L-type calcium channels on the docking sites of the ribbon synapse which trigger neurotransmitter release. Specifically, ribbon synapses contain specialized organelles called synaptic ribbons, which are large presynaptic structures associated in the active zone. They are thought to fine-tune the synaptic vesicle cycle. [8] Synaptic ribbons are in close proximity to synaptic vesicles, which, in turn, are close to the presynaptic neurotransmitter release site via the ribbon. [12]

Postsynaptic structures differ for cochlear cells and photoreceptor cells. Hair cells is capable of one action potential propagation for one vesicle release. One vesicle release from the presynaptic hair cell onto the postsynaptic bouton is enough to create an action potential in the auditory afferent cells. [13] Photoreceptors allow one vesicle release for many action potential propagation. The rod terminal and cone ribbon synapse of the photoreceptors have horizontal synaptic spines expressing AMPA receptors with additional bipolar dendrites exhibiting the mGluR6 receptors. [11] These structures allow for the binding of multiple molecules of glutamate, allowing for the propagation of many action potentials.

Molecular

The molecular composition between conventional neuronal synapse and ribbon synapse is surprisingly dissimilar. At the core of synaptic vesicle exocytosis machinery in vertebrate neuronal synapses is the SNARE complex. The minimally functional SNARE complex includes syntaxin 1, VAMP 1 and 2, and SNAP-25. [14] In contrast, genetic ablation or application of botulinum, targeting SNAP-25, syntaxin 1–3, and VAMP 1–3, did not affect inner hair cell ribbon synapse exocytosis in mice. [15] Additionally, no neuronal SNAREs were observed in hair cells using immunostaining, [15] pointing to the possibility of a different exocytosis mechanism. However, several studies found SNARE mRNA and protein expressed in hair cell, [15] [16] [17] [18] perhaps indicating presence of a neuronal SNARE complex in ribbon synapse that is present in low levels and with very redundant components. [19] [20]

Several proteins of the synaptic ribbon have also been found to be associated with conventional synapses. RIM (Rab3-interacting proteins) is a GTPase expressed on synaptic vesicles that is important in priming synaptic vesicles. [12] Immunostaining has revealed the presence of KIF3A, a component of the kinesin II motor complex whose function is still unknown. [21] The presynaptic cytomatrix proteins Bassoon and Piccolo are both expressed at photoreceptor ribbons, but Piccolo is only expressed at retinal bipolar synaptic ribbons. Bassoon is responsible for attaching itself to the base of the synaptic ribbons and subsequently anchoring the synaptic ribbons. The function of Piccolo is unknown. [11] Also important is the filaments that tether the vesicles to the ribbon synapse. These are shed during high rates of exocytosis. [11] The only unique protein associated with the synaptic ribbon is RIBEYE, first identified in purified synaptic ribbon from bovine retina. [22] RIBEYE is encoded in vertebrate genomes as an alternative transcript of the CtBP2 gene. [12] During chicken and human retinal development, RIBEYE is expressed in photoreceptor and bipolar cell retinal neurons. [23] It is found to be a part of all vertebrate synaptic ribbons in ribbon synapses and is the central portion of ribbon synapses. [12] RIBEYE interactions are required to form a scaffold formation protein of the synaptic ribbon. [12]

There has been a significant amount of research into the pre-synaptic cytomatrix protein Bassoon, which is a multi-domain scaffolding protein universally expressed at synapses in the central nervous system. [24] Mutations in Bassoon have been shown to result in decreased synaptic transmission. However, the underlying mechanisms behind this observed phenomenon are not fully understood and are currently being investigated. It has been observed that in the retina of Bassoon-mutant mice, photoreceptor ribbon synapses are not anchored to pre-synaptic active zones during photoreceptor synaptogenesis. The photoreceptor ribbon synapses are observed to be free floating in the cytoplasm of the photoreceptor terminals. [24] These observations have led to the conclusion that Bassoon plays a critical role in the formation of the photoreceptor ribbon synapse.

Structural plasticity

In correspondence to its activity, ribbon synapses can have synaptic ribbons that vary in size. In mouse photoreceptor synapses when the neurotransmitter release rate is high and exocytosis is high, the synaptic ribbons are long. When neurotransmitter release rate is low and exocytosis is low, the synaptic ribbons are short. [12] A current hypothesis is that synaptic ribbons can enlarge by the addition of more RIBEYE subunit. [25]

Function

Features of the ribbon synapse enable it to process information extremely quickly. Bipolar neurons present a good model for how ribbon synapses function.

Information is conveyed from photoreceptor cells to bipolar cells via the release of the neurotransmitter glutamate at the ribbon synapse. [24] Conventional neurons encode information by changes in the rate of action potentials, but for complex senses like vision, this is not sufficient. Ribbon synapses enable neurons to transmit light signals over a dynamic range of several orders of magnitude in intensity. This is achieved by encoding intensity changes in tonic rate of transmitter release which requires the release of several hundred to several thousand synaptic vesicles per second. [24]

To accomplish this level of performance, the sensory neurons of the eye maintain large pools of fast releasable vesicles that are equipped with ribbon synapses. This enables the cell to exocytose hundreds of vesicles per second, greatly exceeding the rate of neurons without the specialized ribbon synapse. [24]

The current hypothesis of calcium-dependent exocytosis at retinal ribbon synapses suggests that the ribbon accommodates a reservoir of primed releasable vesicles. The vesicles that are in closest contact with the presynaptic plasma membrane at the base of the ribbon constitute the small, rapidly releasable pool of vesicles, whereas the remaining vesicles tethered to the ribbon constitute the large, readily (slower) releasable pool. These regularly aligned rows of synaptic vesicles tethered to either side of the ribbon along with the expression of the kinesin motor protein KIF3A at retinal ribbon synapses can move vesicles like a conveyor belt to the docking/release site at the ribbon base. [24]

Exocytosis

During exocytosis at the bipolar ribbon synapse, vesicles are seen to pause at the membrane and then upon opening of the calcium channels to promptly release their contents within milliseconds[ citation needed ]. Like most exocytosis, Ca2+ regulates the release of vesicles from the presynaptic membrane. Different types of ribbon synapses have different dependence on Ca2+ releases. The hair cell ribbon synapses exhibit a steep dependence on Ca2+ concentration, [26] while the photoreceptor synapses is less steeply dependent on Ca2+ and is stimulated by much lower levels of free Ca2+. [27] The hair cell ribbon synapse experiences spontaneous activity in the absence of stimuli, under conditions of a constant hair cell membrane potential. [28] Voltage clamp at the postsynaptic bouton showed that the bouton experiences a wide range of excitatory postsynaptic current amplitudes. [4] The current amplitude distribution is a positive-skew, with a range of larger amplitudes for both spontaneous and stimulus evoked release. It was thought that this current distribution was not explainable with single vesicle release, and other scenarios of release have been proposed: coordinated multivesicular release, [4] [29] kiss-and-run, or compound fusion of vesicles prior to exocytosis. [30] However it has been recently proposed that uniquantal release with fusion pore flickering is the most plausible interpretation of the found current distribution. [7] In fact, the charge distribution of currents is actually normally distributed, supporting the uniquantal release scenario. It has been shown that the skewness of the current amplitude distribution is well explained by different time courses of neurotransmitter release of a single vesicles with a flickering fusion pore.

The bipolar cell active zone of the ribbon synapse can release neurotransmitter continuously for hundreds of milliseconds during strong stimulation. This release of neurotransmitters occurs in two kinetically distinct phases: a small fast pool where about twenty percent of the total is released in about 1 millisecond, and a large sustained pool where the remaining components are released over hundreds of milliseconds. The existence of correspondence between the pool of tethered vesicles and the pool for sustained release in the rods and bipolar cells of the ribbon reveals that the ribbon may serve as a platform where the vesicles can be primed to allow sustained release of neurotransmitters. This large size of the sustained large component is what separates the ribbon synapse active zones from those of conventional neurons where sustained release is small in comparison. Once the presynaptic vesicles have been depleted, the bipolar cell's releasable pool requires several seconds to refill with the help of ATP hydrolysis. [11]

Endocytosis

A high rate of endocytosis is necessary to counter the high rate of exocytosis during sustained neurotransmitter release at ribbon synapses. Synaptic vesicles need to be recycled for further transmission to occur. These vesicles are directly recycled and because of their mobility, quickly replenish the neurotransmitters required for continued release. In cone photoreceptors, the fused membrane is recycled into the synaptic vesicle without pooling of the membrane into the endosomes. Bipolar cells rely on a different mechanism. It involves taking a large portion of the membrane which is endocytosed and gives rise to synaptic vesicles. This mechanism is conserved in hair cells as well. [11]

Research

Loss of hearing and sight in mice

Research has shown that abnormal expression of otoferlin, a ribbon synapse associated protein, impairs exocytosis of ribbon-bound vesicles in auditory inner hair cells. Otoferlin displays similar functional characteristics to synaptotagmin, a synapse associated protein important for mediating exocytosis in many other synapses (such as those in the central nervous system). Impaired hearing in mice has been shown to be associated with disrupted expression of otoferlin. [31]

In studies of retinal genetic coding of laboratory mice, several mutated ribbon synapse associated voltage-gated L-type calcium channel auxiliary subunits were shown to be associated with dysfunctional rod and cone activity and information transmission. [32] Mice were shown to express significantly reduced scotopic vision, and further research has shown the dysregulation of calcium homeostasis may have a significant role in rod photoreceptor degradation and death. [32]

Human implications

Much of the genetic information associated with the proteins observed in laboratory mice are shared with humans. The protein otoferlin is observed phenotypically in human auditory inner hair cells, and abnormal expression has been linked with deafness. In humans, cochlear implants have shown to reduce the debilitating effects of abnormal otoferlin expression by surpassing the synapse associated with the auditory inner hair cells. [ citation needed ] The genetic code for retinal subunits associated with impaired scotopic vision and rod photoreceptor degradation are conserved at approximately 93% between mice and humans. [31] Further research into the abnormal functioning of these mechanisms could open the door to therapeutic techniques to relieve auditory and visual impairments.

Other areas

Several recent studies have provided evidence that loss-of-function mutations in pre-synaptic proteins of the photoreceptor cells ribbon synapse can cause X-linked congenital stationary night blindness (CSNB) through mutations in the CACNA1F gene, which codes for the αF1-subunit of the L-type calcium channel Cav1.4. [24] The gene is expressed at the active zone of photoreceptor ribbon synapses. The mutation is characterized by a significant reduction in both night and variable perturbation of daylight vision. The mutations in CACNA1F and Cav1.4 have also been observed to co-localize with CaBP4, a photoreceptor-specific calcium-binding protein. [24] CaBP4 has been theorized to modulate the activity of the Cav1.4 channel. It has been theorized to be associated with the proper establishment and maintenance of photoreceptor ribbon synapses. While no evidence has been published, the association between CaBP4 and Cav1.4 is an area of continued research.

Related Research Articles

<span class="mw-page-title-main">Chemical synapse</span> Biological junctions through which neurons signals can be sent

Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.

<span class="mw-page-title-main">Exocytosis</span> Active transport and bulk transport in which a cell transports molecules out of the cell

Exocytosis is a form of active transport and bulk transport in which a cell transports molecules out of the cell. As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

<span class="mw-page-title-main">Rod cell</span> Photoreceptor cells that can function in lower light better than cone cells

Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in peripheral vision. On average, there are approximately 92 million rod cells in the human retina. Rod cells are more sensitive than cone cells and are almost entirely responsible for night vision. However, rods have little role in color vision, which is the main reason why colors are much less apparent in dim light.

<span class="mw-page-title-main">Synaptic vesicle</span> Neurotransmitters that are released at the synapse

In a neuron, synaptic vesicles store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.

<span class="mw-page-title-main">End-plate potential</span>

End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.

Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenesis. Synaptogenesis is particularly important during an individual's critical period, during which there is a certain degree of synaptic pruning due to competition for neural growth factors by neurons and synapses. Processes that are not used, or inhibited during their critical period will fail to develop normally later on in life.

<span class="mw-page-title-main">Synapsin</span> Family of proteins

The synapsins are a family of proteins that have long been implicated in the regulation of neurotransmitter release at synapses. Specifically, they are thought to be involved in regulating the number of synaptic vesicles available for release via exocytosis at any one time. Synapsins are present in invertebrates and vertebrates and are strongly conserved across all species. They are expressed in highest concentration in the nervous system, although they also express in other body systems such as the reproductive organs, including both eggs and spermatozoa. Synapsin function also increases as the organism matures, reaching its peak at sexual maturity.

<span class="mw-page-title-main">Retina horizontal cell</span>

Horizontal cells are the laterally interconnecting neurons having cell bodies in the inner nuclear layer of the retina of vertebrate eyes. They help integrate and regulate the input from multiple photoreceptor cells. Among their functions, horizontal cells are believed to be responsible for increasing contrast via lateral inhibition and adapting both to bright and dim light conditions. Horizontal cells provide inhibitory feedback to rod and cone photoreceptors. They are thought to be important for the antagonistic center-surround property of the receptive fields of many types of retinal ganglion cells.

<span class="mw-page-title-main">SNARE protein</span> Protein family

SNARE proteins – "SNAPREceptors" – are a large protein family consisting of at least 24 members in yeasts, more than 60 members in mammalian cells, and some numbers in plants. The primary role of SNARE proteins is to mediate the fusion of vesicles with the target membrane; this notably mediates exocytosis, but can also mediate the fusion of vesicles with membrane-bound compartments. The best studied SNAREs are those that mediate the release of synaptic vesicles containing neurotransmitters in neurons. These neuronal SNAREs are the targets of the neurotoxins responsible for botulism and tetanus produced by certain bacteria.

<span class="mw-page-title-main">Neurotransmission</span> Impulse transmission between neurons

Neurotransmission is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron, and bind to and react with the receptors on the dendrites of another neuron a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at GABAergic and glutamatergic synapses.

<span class="mw-page-title-main">Synaptotagmin</span>

Synaptotagmins (SYTs) constitute a family of membrane-trafficking proteins that are characterized by an N-terminal transmembrane region (TMR), a variable linker, and two C-terminal C2 domains - C2A and C2B. There are 17 isoforms in the mammalian synaptotagmin family. There are several C2-domain containing protein families that are related to synaptotagmins, including transmembrane (Ferlins, Extended-Synaptotagmin (E-Syt) membrane proteins, and MCTPs) and soluble (RIMS1 and RIMS2, UNC13D, synaptotagmin-related proteins and B/K) proteins. The family includes synaptotagmin 1, a Ca2+ sensor in the membrane of the pre-synaptic axon terminal, coded by gene SYT1.

<span class="mw-page-title-main">Synapse</span> Structure connecting neurons in the nervous system

In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell.

<span class="mw-page-title-main">Complexin</span>

Complexin (also known as synaphin) refers to a one of a small set of eukaryotic cytoplasmic neuronal proteins which binds to the SNARE protein complex (SNAREpin) with a high affinity. These are called synaphin 1 and 2. In the presence of Ca2+, the transport vesicle protein synaptotagmin displaces complexin, allowing the SNARE protein complex to bind the transport vesicle to the presynaptic membrane.

<span class="mw-page-title-main">DNAJC5</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily C member 5, also known as cysteine string protein or CSP is a protein, that in humans encoded by the DNAJC5 gene. It was first described in 1990.

<span class="mw-page-title-main">Axon terminal</span> Nerve fiber part

Axon terminals are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body in order to transmit those impulses to other neurons, muscle cells or glands. In the central nervous system, most presynaptic terminals are actually formed along the axons, not at their ends.

Vesicle fusion is the merging of a vesicle with other vesicles or a part of a cell membrane. In the latter case, it is the end stage of secretion from secretory vesicles, where their contents are expelled from the cell through exocytosis. Vesicles can also fuse with other target cell compartments, such as a lysosome. Exocytosis occurs when secretory vesicles transiently dock and fuse at the base of cup-shaped structures at the cell plasma membrane called porosome, the universal secretory machinery in cells. Vesicle fusion may depend on SNARE proteins in the presence of increased intracellular calcium (Ca2+) concentration.

<span class="mw-page-title-main">Synapsin 2</span> Protein-coding gene in the species Homo sapiens

Synapsin II is the collective name for synapsin IIa and synapsin IIb, two nearly identical phosphoproteins in the synapsin family that in humans are encoded by the SYN2 gene. Synapsins associate as endogenous substrates to the surface of synaptic vesicles and act as key modulators in neurotransmitter release across the presynaptic membrane of axonal neurons in the nervous system.

<span class="mw-page-title-main">Active zone</span>

The active zone or synaptic active zone is a term first used by Couteaux and Pecot-Dechavassinein in 1970 to define the site of neurotransmitter release. Two neurons make near contact through structures called synapses allowing them to communicate with each other. As shown in the adjacent diagram, a synapse consists of the presynaptic bouton of one neuron which stores vesicles containing neurotransmitter, and a second, postsynaptic neuron which bears receptors for the neurotransmitter, together with a gap between the two called the synaptic cleft. When an action potential reaches the presynaptic bouton, the contents of the vesicles are released into the synaptic cleft and the released neurotransmitter travels across the cleft to the postsynaptic neuron and activates the receptors on the postsynaptic membrane.

Kiss-and-run fusion is a type of synaptic vesicle release where the vesicle opens and closes transiently. In this form of exocytosis, the vesicle docks and transiently fuses at the presynaptic membrane and releases its neurotransmitters across the synapse, after which the vesicle can then be reused.

Neurotransmitters are released into a synapse in packaged vesicles called quanta. One quantum generates a miniature end plate potential (MEPP) which is the smallest amount of stimulation that one neuron can send to another neuron. Quantal release is the mechanism by which most traditional endogenous neurotransmitters are transmitted throughout the body. The aggregate sum of many MEPPs is an end plate potential (EPP). A normal end plate potential usually causes the postsynaptic neuron to reach its threshold of excitation and elicit an action potential. Electrical synapses do not use quantal neurotransmitter release and instead use gap junctions between neurons to send current flows between neurons. The goal of any synapse is to produce either an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential (IPSP), which generate or repress the expression, respectively, of an action potential in the postsynaptic neuron. It is estimated that an action potential will trigger the release of approximately 20% of an axon terminal's neurotransmitter load.

References

  1. Matthews G, Fuchs P (2010). "The diverse roles of ribbon synapses in sensory neurotransmission". Nat. Rev. Neurosci. 11 (12): 812–22. doi:10.1038/nrn2924. PMC   3065184 . PMID   21045860.
  2. Jarsky T, Tian M, Singer JH (2010). "Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse". J. Neurosci. 30 (36): 11885–95. doi:10.1523/JNEUROSCI.1415-10.2010. PMC   2945284 . PMID   20826653.
  3. Wong AB, Rutherford MA, Gabrielaitis M, Pangrsic T, Göttfert F, Frank T, Michanski S, Hell S, Wolf F, Wichmann C, Moser T (2014). "Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis". EMBO J. 33 (3): 247–64. doi:10.1002/embj.201387110. PMC   3989618 . PMID   24442635.
  4. 1 2 3 Glowatzki, Elisabeth; Fuchs, Paul A. (22 January 2002). "Transmitter release at the hair cell ribbon synapse". Nature Neuroscience. 5 (2): 147–154. doi:10.1038/nn796. PMID   11802170. S2CID   15735147.
  5. Graydon CW, Cho S, Li GL, Kachar B, von Gersdorff H (2011). "Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses". J. Neurosci. 31 (46): 16637–50. doi:10.1523/JNEUROSCI.1866-11.2011. PMC   3235473 . PMID   22090491.
  6. Singer JH, Lassová L, Vardi N, Diamond JS (2004). "Coordinated multivesicular release at a mammalian ribbon synapse". Nat. Neurosci. 7 (8): 826–33. doi:10.1038/nn1280. PMID   15235608. S2CID   13232594.
  7. 1 2 Chapochnikov NM, Takago H, Huang CH, Pangršič T, Khimich D, Neef J, Auge E, Göttfert F, Hell SW, Wichmann C, Wolf F, Moser T (2014). "Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis". Neuron. 83 (6): 1389–403. doi: 10.1016/j.neuron.2014.08.003 . hdl: 11858/00-001M-0000-0024-1DA9-C . PMID   25199706.
  8. 1 2 Parsons TD, Sterling P (February 2003). "Synaptic ribbon. Conveyor belt or safety belt?". Neuron . 37 (3): 379–82. doi: 10.1016/S0896-6273(03)00062-X . PMID   12575947. S2CID   15161167.
  9. Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM (January 1999). "Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography". J. Neurosci. 19 (1): 119–32. doi: 10.1523/JNEUROSCI.19-01-00119.1999 . PMC   6782356 . PMID   9870944.
  10. DE ROBERTIS, E; FRANCHI, CM (25 May 1956). "Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones". The Journal of Biophysical and Biochemical Cytology. 2 (3): 307–18. doi:10.1083/jcb.2.3.307. PMC   2223974 . PMID   13331963.
  11. 1 2 3 4 5 6 Sterling, Peter; Gary Matthews (January 2005). "Structure and Function of Ribbon Synapses". Trends in Neurosciences. 28 (1): 20–29. doi:10.1016/j.tins.2004.11.009. PMID   15626493. S2CID   16576501.
  12. 1 2 3 4 5 6 Schmitz, Frank (2009). "The Making of Synaptic Ribbons: How They Are Built And What They Do". The Neuroscientist. 15 (6): 611–622. doi:10.1177/1073858409340253. PMID   19700740. S2CID   8488518.
  13. Siegel, J.H. (1 April 1992). "Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea". Hearing Research. 59 (1): 85–92. doi:10.1016/0378-5955(92)90105-V. PMID   1629051. S2CID   32276557.
  14. Jahn, R; Fasshauer, D (11 October 2012). "Molecular machines governing exocytosis of synaptic vesicles". Nature. 490 (7419): 201–7. Bibcode:2012Natur.490..201J. doi:10.1038/nature11320. PMC   4461657 . PMID   23060190.
  15. 1 2 3 Nouvian, R; Neef, J; Bulankina, AV; Reisinger, E; Pangršič, T; Frank, T; Sikorra, S; Brose, N; Binz, T; Moser, T (April 2011). "Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins" (PDF). Nature Neuroscience. 14 (4): 411–3. doi:10.1038/nn.2774. PMID   21378973. S2CID   12622144.
  16. Safieddine, S; Wenthold, RJ (March 1999). "SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins". The European Journal of Neuroscience. 11 (3): 803–12. doi:10.1046/j.1460-9568.1999.00487.x. PMID   10103074. S2CID   11768688.
  17. Sendin, G; Bulankina, AV; Riedel, D; Moser, T (21 March 2007). "Maturation of ribbon synapses in hair cells is driven by thyroid hormone". Journal of Neuroscience. 27 (12): 3163–73. doi: 10.1523/jneurosci.3974-06.2007 . PMC   6672472 . PMID   17376978.
  18. Uthaiah, RC; Hudspeth, AJ (15 September 2010). "Molecular anatomy of the hair cell's ribbon synapse". Journal of Neuroscience. 30 (37): 12387–99. doi:10.1523/jneurosci.1014-10.2010. PMC   2945476 . PMID   20844134.
  19. Safieddine, S; El-Amraoui, A; Petit, C (2012). "The auditory hair cell ribbon synapse: from assembly to function". Annual Review of Neuroscience. 35: 509–28. doi:10.1146/annurev-neuro-061010-113705. PMID   22715884.
  20. Wichmann, C; Moser, T (July 2015). "Relating structure and function of inner hair cell ribbon synapses". Cell and Tissue Research. 361 (1): 95–114. doi:10.1007/s00441-014-2102-7. PMC   4487357 . PMID   25874597.
  21. Muresan, V; Lyass, A; Schnapp, BJ (1999). "The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors". J Neurosci. 19 (3): 1027–37. doi: 10.1523/JNEUROSCI.19-03-01027.1999 . PMC   6782153 . PMID   9920666.
  22. Schmitz, Frank; Königstorfer, Andreas; Südhof, Thomas C. (December 2000). "RIBEYE, a Component of Synaptic Ribbons". Neuron. 28 (3): 857–872. doi: 10.1016/S0896-6273(00)00159-8 . PMID   11163272. S2CID   15695695.
  23. Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones M, Zack, Enke RA, Wahlin KJ (January 2022). "Temporal and isoform-specific expression of CTBP2 is evolutionarily conserved between the developing chick and human retina". Front. Mol. Neurosci. 14: 773356. doi: 10.3389/fnmol.2021.773356 . PMC   8793361 . PMID   35095414.
  24. 1 2 3 4 5 6 7 8 tom Dieck, Susanne; Johann Helmut Brandstatter (2006). "Ribbon synapses of the retina". Cell Tissue Res. 326 (2): 339–346. doi:10.1007/s00441-006-0234-0. PMID   16775698. S2CID   43318869.
  25. Magupalli, V; Schwarz, K; Alpadi, K; Natarajan, S; Seigel, GM; Schmitz, F (2008). "Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons". J Neurosci. 28 (32): 7954–67. doi: 10.1523/JNEUROSCI.1964-08.2008 . PMC   6670776 . PMID   18685021.
  26. Beutner, Dirk; Voets, Thomas; Neher, Erwin; Moser, Tobias (1 March 2001). "Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse". Neuron. 29 (3): 681–690. doi:10.1016/S0896-6273(01)00243-4. hdl: 11858/00-001M-0000-0012-F59B-2 . PMID   11301027. S2CID   13473512.
  27. Heidelberger, Ruth; Heinemann, Christian; Neher, Erwin; Matthews, Gary (6 October 1994). "Calcium dependence of the rate of exocytosis in a synaptic terminal". Nature. 371 (6497): 513–515. Bibcode:1994Natur.371..513H. doi:10.1038/371513a0. PMID   7935764. S2CID   4316464.
  28. Matthews, Gary; Fuchs, Paul (3 November 2010). "The diverse roles of ribbon synapses in sensory neurotransmission". Nature Reviews Neuroscience. 11 (12): 812–822. doi:10.1038/nrn2924. PMC   3065184 . PMID   21045860.
  29. Goutman, JD; Glowatzki, E (9 October 2007). "Time course and calcium dependence of transmitter release at a single ribbon synapse". Proceedings of the National Academy of Sciences of the United States of America. 104 (41): 16341–6. Bibcode:2007PNAS..10416341G. doi: 10.1073/pnas.0705756104 . PMC   2042208 . PMID   17911259.
  30. He, Liming; Xue, Lei; Xu, Jianhua; McNeil, Benjamin D.; Bai, Li; Melicoff, Ernestina; Adachi, Roberto; Wu, Ling-Gang (11 March 2009). "Compound vesicle fusion increases quantal size and potentiates synaptic transmission". Nature. 459 (7243): 93–97. Bibcode:2009Natur.459...93H. doi:10.1038/nature07860. PMC   2768540 . PMID   19279571.
  31. 1 2 Roux, Isabelle; Safieddine, Saaid; Nouvian, Régis; Grati, M'hamed; Simmler, Marie-Christine; Bahloul, Amel; Perfettini, Isabelle; Le Gall, Morgane; Rostaing, Philippe; Hamard, Ghislaine; Triller, Antoine; Avan, Paul; Moser, Tobias; Petit, Christine (2006). "Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse". Cell. 127 (2): 277–289. doi: 10.1016/j.cell.2006.08.040 . PMID   17055430. S2CID   15233556.
  32. 1 2 Wycisk, Katharina; Birgit Budde; Silke Feil; Sergej Skosyrski; Francesca Buzzi; John Neidhardt; Esther Glaus; Peter Nürnberg; Klaus Ruether; Wolfgang Berger (2011). "Structural and Functional Abnormalities of Retinal Ribbon Synapses due to Cacna2d4 Mutation". Investigative Ophthalmology and Visual Science. 47 (8): 3523–3530. doi: 10.1167/iovs.06-0271 . PMID   16877424.