Part of a series on |
Machine learning and data mining |
---|
A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.
The direct modeling of likelihood provides many advantages. For example, the negative log-likelihood can be directly computed and minimized as the loss function. Additionally, novel samples can be generated by sampling from the initial distribution, and applying the flow transformation.
In contrast, many alternative generative modeling methods such as variational autoencoder (VAE) and generative adversarial network do not explicitly represent the likelihood function.
Let be a (possibly multivariate) random variable with distribution .
For , let be a sequence of random variables transformed from . The functions should be invertible, i.e. the inverse function exists. The final output models the target distribution.
The log likelihood of is (see derivation):
To efficiently compute the log likelihood, the functions should be 1. easy to invert, and 2. easy to compute the determinant of its Jacobian. In practice, the functions are modeled using deep neural networks, and are trained to minimize the negative log-likelihood of data samples from the target distribution. These architectures are usually designed such that only the forward pass of the neural network is required in both the inverse and the Jacobian determinant calculations. Examples of such architectures include NICE, [4] RealNVP, [5] and Glow. [6]
Consider and . Note that .
By the change of variable formula, the distribution of is:
Where is the determinant of the Jacobian matrix of .
By the inverse function theorem:
By the identity (where is an invertible matrix), we have:
The log likelihood is thus:
In general, the above applies to any and . Since is equal to subtracted by a non-recursive term, we can infer by induction that:
As is generally done when training a deep learning model, the goal with normalizing flows is to minimize the Kullback–Leibler divergence between the model's likelihood and the target distribution to be estimated. Denoting the model's likelihood and the target distribution to learn, the (forward) KL-divergence is:
The second term on the right-hand side of the equation corresponds to the entropy of the target distribution and is independent of the parameter we want the model to learn, which only leaves the expectation of the negative log-likelihood to minimize under the target distribution. This intractable term can be approximated with a Monte-Carlo method by importance sampling. Indeed, if we have a dataset of samples each independently drawn from the target distribution , then this term can be estimated as:
Therefore, the learning objective
is replaced by
In other words, minimizing the Kullback–Leibler divergence between the model's likelihood and the target distribution is equivalent to maximizing the model likelihood under observed samples of the target distribution. [7]
A pseudocode for training normalizing flows is as follows: [8]
The earliest example. [9] Fix some activation function , and let with the appropriate dimensions, thenThe inverse has no closed-form solution in general.
The Jacobian is .
For it to be invertible everywhere, it must be nonzero everywhere. For example, and satisfies the requirement.
Let be even-dimensional, and split them in the middle. [4] Then the normalizing flow functions arewhere is any neural network with weights .
is just , and the Jacobian is just 1, that is, the flow is volume-preserving.
When , this is seen as a curvy shearing along the direction.
The Real Non-Volume Preserving model generalizes NICE model by: [5]
Its inverse is , and its Jacobian is . The NICE model is recovered by setting . Since the Real NVP map keeps the first and second halves of the vector separate, it's usually required to add a permutation after every Real NVP layer.
In generative flow model, [6] each layer has 3 parts:
The idea of using the invertible 1x1 convolution is to permute all layers in general, instead of merely permuting the first and second half, as in Real NVP.
An autoregressive model of a distribution on is defined as the following stochastic process: [10]
where and are fixed functions that define the autoregressive model.
By the reparameterization trick, the autoregressive model is generalized to a normalizing flow:The autoregressive model is recovered by setting .
The forward mapping is slow (because it's sequential), but the backward mapping is fast (because it's parallel).
The Jacobian matrix is lower-diagonal, so the Jacobian is .
Reversing the two maps and of MAF results in Inverse Autoregressive Flow (IAF), which has fast forward mapping and slow backward mapping. [11]
Instead of constructing flow by function composition, another approach is to formulate the flow as a continuous-time dynamic. [12] [13] Let be the latent variable with distribution . Map this latent variable to data space with the following flow function:
where is an arbitrary function and can be modeled with e.g. neural networks.
The inverse function is then naturally: [12]
And the log-likelihood of can be found as: [12]
Since the trace depends only on the diagonal of the Jacobian , this allows "free-form" Jacobian. [14] Here, "free-form" means that there is no restriction on the Jacobian's form. It is contrasted with previous discrete models of normalizing flow, where the Jacobian is carefully designed to be only upper- or lower-diagonal, so that the Jacobian can be evaluated efficiently.
The trace can be estimated by "Hutchinson's trick": [15] [16]
Given any matrix , and any random with , we have . (Proof: expand the expectation directly.)
Usually, the random vector is sampled from (normal distribution) or (Radamacher distribution).
When is implemented as a neural network, neural ODE methods [17] would be needed. Indeed, CNF was first proposed in the same paper that proposed neural ODE.
There are two main deficiencies of CNF, one is that a continuous flow must be a homeomorphism, thus preserve orientation and ambient isotopy (for example, it's impossible to flip a left-hand to a right-hand by continuous deforming of space, and it's impossible to turn a sphere inside out, or undo a knot), and the other is that the learned flow might be ill-behaved, due to degeneracy (that is, there are an infinite number of possible that all solve the same problem).
By adding extra dimensions, the CNF gains enough freedom to reverse orientation and go beyond ambient isotopy (just like how one can pick up a polygon from a desk and flip it around in 3-space, or unknot a knot in 4-space), yielding the "augmented neural ODE". [18]
Any homeomorphism of can be approximated by a neural ODE operating on , proved by combining Whitney embedding theorem for manifolds and the universal approximation theorem for neural networks. [19]
To regularize the flow , one can impose regularization losses. The paper [15] proposed the following regularization loss based on optimal transport theory:where are hyperparameters. The first term punishes the model for oscillating the flow field over time, and the second term punishes it for oscillating the flow field over space. Both terms together guide the model into a flow that is smooth (not "bumpy") over space and time.
Despite normalizing flows success in estimating high-dimensional densities, some downsides still exist in their designs. First of all, their latent space where input data is projected onto is not a lower-dimensional space and therefore, flow-based models do not allow for compression of data by default and require a lot of computation. However, it is still possible to perform image compression with them. [20]
Flow-based models are also notorious for failing in estimating the likelihood of out-of-distribution samples (i.e.: samples that were not drawn from the same distribution as the training set). [21] Some hypotheses were formulated to explain this phenomenon, among which the typical set hypothesis, [22] estimation issues when training models, [23] or fundamental issues due to the entropy of the data distributions. [24]
One of the most interesting properties of normalizing flows is the invertibility of their learned bijective map. This property is given by constraints in the design of the models (cf.: RealNVP, Glow) which guarantee theoretical invertibility. The integrity of the inverse is important in order to ensure the applicability of the change-of-variable theorem, the computation of the Jacobian of the map as well as sampling with the model. However, in practice this invertibility is violated and the inverse map explodes because of numerical imprecision. [25]
Flow-based generative models have been applied on a variety of modeling tasks, including:
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature. They are named after Carl Gustav Jacob Jacobi.
In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.
In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.
In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem.
In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.
In statistics, the score is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular value of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values. If the log-likelihood function is continuous over the parameter space, the score will vanish at a local maximum or minimum; this fact is used in maximum likelihood estimation to find the parameter values that maximize the likelihood function.
In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix
In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix:
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction, to generate lower-dimensional embeddings for subsequent use by other machine learning algorithms.
The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.
In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. The problem is that as the network depth or sequence length increases, the gradient magnitude typically is expected to decrease, slowing the training process. In the worst case, this may completely stop the neural network from further learning. As one example of this problem, traditional activation functions such as the hyperbolic tangent function have gradients in the range [-1,1], and backpropagation computes gradients using the chain rule. This has the effect of multiplying n of these small numbers to compute gradients of the early layers in an n-layer network, meaning that the gradient decreases exponentially with n while the early layers train very slowly.
A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss.
In variational Bayesian methods, the evidence lower bound is a useful lower bound on the log-likelihood of some observed data.
A transformer is a deep learning architecture developed by researchers at Google and based on the multi-head attention mechanism, proposed in the 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished.
In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. It is part of the families of probabilistic graphical models and variational Bayesian methods.
In the study of artificial neural networks (ANNs), the neural tangent kernel (NTK) is a kernel that describes the evolution of deep artificial neural networks during their training by gradient descent. It allows ANNs to be studied using theoretical tools from kernel methods.
An energy-based model (EBM) is an application of canonical ensemble formulation from statistical physics for learning from data. The approach prominently appears in generative artificial intelligence.
In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. A trained diffusion model can be sampled in many ways, with different efficiency and quality.