Gadolinium(III) oxalate

Last updated
Gadolinium(III) oxalate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.606 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-766-5
PubChem CID
  • InChI=1S/3C2H2O4.2Gd/c3*3-1(4)2(5)6;;/h3*(H,3,4)(H,5,6);;/q;;;2*+3/p-6
    Key: SQORATIMOBOFKR-UHFFFAOYSA-H
  • decahydrate:InChI=1S/3C2H2O4.2Gd.10H2O/c3*3-1(4)2(5)6;;;;;;;;;;;;/h3*(H,3,4)(H,5,6);;;10*1H2/q;;;2*+3;;;;;;;;;;/p-6
    Key: MOJMYWALZOTAOX-UHFFFAOYSA-H
  • [Gd+3].[Gd+3].[O-]C(=O)C(=O)[O-].[O-]C(=O)C(=O)[O-].[O-]C(=O)C(=O)[O-]
  • decahydrate:C(=O)(C(=O)[O-])[O-].C(=O)(C(=O)[O-])[O-].C(=O)(C(=O)[O-])[O-].O.O.O.O.O.O.O.O.O.O.[Gd+3].[Gd+3]
Properties
Gd2(C2O4)3
Appearancecolorless crystals
insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Gadolinium oxalate is the oxalate of gadolinium, with the chemical formula Gd2(C2O4)3. Its hydrate can be prepared by the reaction of gadolinium nitrate and oxalic acid. [1]

Properties

The decahydrate of gadolinium oxalate thermally decomposes to obtain the anhydrous form, which can then be heated to produce gadolinium oxide. [2] Gadolinium oxalate reacts with hydrochloric acid to produce Gd(C2O4)Cl. [3] It also reacts with sodium hydroxide under hydrothermal conditions to produce gadolinium hydroxide. [1]

Related Research Articles

<span class="mw-page-title-main">Gadolinium</span> Chemical element, symbol Gd and atomic number 64

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare-earths because of their similar chemical properties.

<span class="mw-page-title-main">Calcium oxalate</span> Calcium salt of oxalic acid

Calcium oxalate (in archaic terminology, oxalate of lime) is a calcium salt of oxalic acid with the chemical formula CaC2O4 or Ca(COO)2. It forms hydrates CaC2O4·nH2O, where n varies from 1 to 3. Anhydrous and all hydrated forms are colorless or white. The monohydrate CaC2O4·H2O occurs naturally as the mineral whewellite, forming envelope-shaped crystals, known in plants as raphides. The two rarer hydrates are dihydrate CaC2O4·2H2O, which occurs naturally as the mineral weddellite, and trihydrate CaC2O4·3H2O, which occurs naturally as the mineral caoxite, are also recognized. Some foods have high quantities of calcium oxalates and can produce sores and numbing on ingestion and may even be fatal. Cultural groups with diets that depend highly on fruits and vegetables high in calcium oxalate, such as those in Micronesia, reduce the level of it by boiling and cooking them. They are a constituent in 76% of human kidney stones. Calcium oxalate is also found in beerstone, a scale that forms on containers used in breweries.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Sodium oxalate</span> Chemical compound

Sodium oxalate, or disodium oxalate, is the sodium salt of oxalic acid with the formula Na2C2O4. It is a white, crystalline, odorless solid, that decomposes above 290 °C.

<span class="mw-page-title-main">Gadolinium(III) oxide</span> Chemical compound

Gadolinium(III) oxide (archaically gadolinia) is an inorganic compound with the formula Gd2O3. It is one of the most commonly available forms of the rare-earth element gadolinium, derivatives of which are potential contrast agents for magnetic resonance imaging.

<span class="mw-page-title-main">Strontium oxalate</span> Chemical compound

Strontium oxalate is a compound with the chemical formula SrC2O4. Strontium oxalate can exist either in a hydrated form (SrC2O4nH2O) or as the acidic salt of strontium oxalate (SrC2O4mH2C2O4nH2O).

<span class="mw-page-title-main">Magnesium oxalate</span> Magnesium compound

Magnesium oxalate is an organic compound comprising a magnesium cation with a 2+ charge bonded to an oxalate anion. It has the chemical formula MgC2O4. Magnesium oxalate is a white solid that comes in two forms: an anhydrous form and a dihydrate form where two water molecules are complexed with the structure. Both forms are practically insoluble in water and are insoluble in organic solutions.

Chromium(II) oxalate is an inorganic compound with the chemical formula CrC2O4.

<span class="mw-page-title-main">Lanthanum hydroxide</span> Chemical compound

Lanthanum hydroxide is La(OH)
3
, a hydroxide of the rare-earth element lanthanum.

<span class="mw-page-title-main">Caesium oxalate</span> Chemical compound

Caesium oxalate (standard IUPAC spelling) dicesium oxalate, or cesium oxalate (American spelling) is the oxalate of caesium. Caesium oxalate has the chemical formula of Cs2C2O4.

Praseodymium(III) oxalate is an inorganic compound, a salt of praseodymium metal and oxalic acid with the chemical formula C6O12Pr2. The compound forms light green crystals, insoluble in water, also forms crystalline hydrates.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

The carbonate oxalates are mixed anion compounds that contain both carbonate (CO3) and oxalate (C2O4) anions. Most compounds incorporate large trivalent metal ions, such as the rare earth elements. Some carbonate oxalate compounds of variable composition are formed by heating oxalates.

Samarium(III) oxalate is an inorganic compound, a salt of samarium and oxalic acid with the formula Sm2(C2O4)3. The compound does not dissolve in water, forms a crystalline hydrate with yellow crystals.

<span class="mw-page-title-main">Gadolinium(III) hydroxide</span> Chemical compound

Gadolinium(III) hydroxide is a chemical compound with the formula Gd(OH)3. Its nanoparticles has a potential use for layering various drugs, such as diclofenac, ibuprofen, and naproxen.

<span class="mw-page-title-main">Neodymium compounds</span> Chemical compounds with at least one neodymium atom

Neodymium compounds are compounds formed by the lanthanide metal neodymium (Nd). In these compounds, neodymium generally exhibits the +3 oxidation state, such as NdCl3, Nd2(SO4)3 and Nd(CH3COO)3. Compounds with neodymium in the +2 oxidation state are also known, such as NdCl2 and NdI2. Some neodymium compounds have colors that vary based upon the type of lighting.

<span class="mw-page-title-main">Neodymium(III) oxalate</span> Chemical compound

Neodymium(III) oxalate is the oxalate salt of neodymium, with the chemical formula of Nd2(C2O4)3 in the anhydrous or hydrate form. Its decahydrate decomposes to the anhydrous form when heated, and when heated further, decomposes to Nd2O2C2O4, finally obtaining neodymium(III) oxide. It dissolves in hydrochloric acid to form Nd(C2O4)Cl·3H2O.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

Europium(III) oxalate (Eu2(C2O4)3) is a chemical compound of europium and oxalic acid. There are different hydrates including the decahydrate, hexahydrate and tetrahydrate. Europium(II) oxalate is also known.

Lanthanum oxalate is an inorganic compound, a salt of lanthanum metal and oxalic acid with the chemical formula La
2
(C
2
O
4
)
3
.

References

  1. 1 2 Yidong Yin, Guangyan Hong (2006-11-03). "Synthesis and characterization of Gd(OH)3 nanobundles". Journal of Nanoparticle Research. 8 (5): 755–760. Bibcode:2006JNR.....8..755Y. doi:10.1007/s11051-005-9044-7. ISSN   1388-0764. S2CID   98381833 . Retrieved 2020-10-11.
  2. Wendlandt, W. W. (1959). "Thermal Decomposition of Rare Earth Metal Oxalates". Analytical Chemistry. 31 (3): 408–410. doi:10.1021/ac60147a024. ISSN   0003-2700.
  3. Moebius, R.; Matthes, F. (1964). "The exchange of oxalate ions for chloride ions of the oxalate hydrates of the rare earths and yttrium". Zeitschrift für Chemie. 4 (6): 234–235. ISSN   0044-2402.