The geology of national parks in Britain strongly influences the landscape character of each of the fifteen such areas which have been designated. There are ten national parks in England, three in Wales and two in Scotland. Ten of these were established in England and Wales in the 1950s under the provisions of the National Parks and Access to the Countryside Act 1949. With one exception, all of these first ten, together with the two Scottish parks were centred on upland or coastal areas formed from Palaeozoic rocks. The exception is the North York Moors National Park which is formed from sedimentary rocks of Jurassic age.
Three new national parks have been created in lowland England since the late 1980s, these being the Broads, South Downs and New Forest national parks. (Strictly speaking the Broads was not created as a national park but the Broads Authority has since adopted the name for marketing purposes.) The landscape of these areas reflects the fact that they are all established on rocks and sediments of Mesozoic and Cenozoic age. [1]
Old Red Sandstone is the dominant rock within the Brecon Beacons National Park, forming peaks such as Pen y Fan, Sugar Loaf and the Carmarthen Fans but to the south of these Devonian rocks, a narrow band of Carboniferous Limestone stretches east-west through the park. It gives rise to characteristically karstic landscapes and hosts Britain's deepest (Ogof Ffynnon Ddu at 274.5m) and several of its longest caves such as Ogof Draenen and Ogof Agen Allwedd. The Brecon Beacons were glaciated during the last ice age and cirque lakes such as those at Llyn Cwm Llwch and Llyn y Fan Fach are amongst the most popular destinations for visitors.
The Broads are underlain by a suite of generally flat-lying sedimentary rock types of which the most recent are those of Neogene age. Almost entirely covered by more recent superficial deposits, they are exposed at the surface to a very limited extent or else are known from boreholes or quarry workings. The area was covered by the southern edge of an icesheet during the Anglian glaciation which left spreads of glacial debris or till. Overlying these across much the larger part of the 'national park' are silts and clays of Flandrian age, which together with peat deposits form the broad flats of the Waveney, Yare, Bure and Thurne valleys. Extraction of the peat in historic times, and subsequent flooding of the workings, has resulted in the pattern of shallow lakes or 'broads for which the area is widely known. [2]
The majority of the rocks within the Cairngorms National Park belong to the Dalradian Supergroup, a thick sequence of sands, muds and limestones that were deposited between about 800 and 600 million years ago on the margins of the former continent of Laurentia. [3] Rocks now ascribed to the Moine Supergroup occur along the northwestern edge of the Park.
The Dalradian and Moine successions were intensely faulted, folded and metamorphosed during the Caledonian Orogeny between about 490 and 430 million years ago [4] Geologists recognize a ‘Grampian event’, centred around 470 million years ago, which was responsible for the initial deformation of the Dalradian and relates to the collision of a volcanic island arc with Laurentia over a period of about 20 million years. The subsequent collision of Baltica with Laurentia caused the ‘Scandian event’ which involved further folding and faulting of the Dalradian rock sequence. The Great Glen, Ericht-Laidon and Glen Tilt faults were all active as strike-slip faults at this time and may have played a part in allowing large plutons of granite to rise up amongst the Dalradian rocks and then cool in situ. [5]
The largest of these plutons is the granite mass which forms the Cairngorms themselves and which was emplaced around 427 million years ago. It is thought that the pluton had been unroofed within 20 million years of its emplacement and that the present landscape of the Cairngorms had begun to form by 390 million years ago. Evidence suggests that the granite currently at the surface was initially to be found at a depth of between 4 and 7km. [6]
Other than a small outlier of Old Red Sandstone, there are no younger solid rocks within the National Park. The ice ages of the last 2.5 million years have however left their mark both in terms of erosional and depositional features. Post-glacial features include peat and landslips.
The geology of the national park comprises a 625 km2 (241 sq mi) core of granite intruded during the early Permian period into a sequence of sedimentary rocks originating in the Devonian and Carboniferous periods. These rocks were faulted and folded, sometimes, intensely, during the Variscan orogeny. Thermal metamorphism has also taken place around the margins of the granite pluton altering the character of the sedimentary rocks whilst mineral veins were emplaced within the granite. A small outlier of Palaeogene sediments occurs on the eastern boundary of the national park.
The area was not subject to glaciation during the Quaternary ice ages but periglacial processes have contributed to the character of the modern landscape. Tin mining and the quarrying of granite were some of the area's significant extractive industries in the past whilst tourism based in large part upon the perceived quality of the area's landscape is important for the modern economy.
Exmoor is formed largely by a suite of mudstones and sandstones of Devonian age which are folded into a broad east-west oriented anticline during the Variscan orogeny and well exposed along the Bristol Channel coast. There are Triassic sandstones in the area around Minehead and a small outlier of the Jurassic Lias. Exmoor lay just to the south of the Quaternary ice-sheets but deposits of head (frost-shattered rock fragments building on and at the foot of hillsides) date from this time. [7]
The Lake District National Park is formed from a core of lower Palaeozoic sedimentary and volcanic rocks, underpinned by a granitic batholith. This sequence was intensely faulted and folded during the Caledonian orogeny and is surrounded by a relatively unaffected Carboniferous succession of limestones and sandstones with Triassic sandstones along the southwest coastal strip. It was heavily glaciated during the succession of Quaternary glaciations giving rise to many features in its landscape such as glacial cirques and tarns, aretes and finger lakes for which it is well-known.
Loch Lomond and The Trossachs National Park is a mountainous region with good exposure of the Proterozoic and Palaeozoic bedrock. The northeast – southwest aligned Highland Boundary Fault forms a major geological divide between the generally older rocks to its northwest, assigned to the Dalradian Supergroup, and the younger Devonian rocks to its southeast, assigned to the Old Red Sandstone. The Argyll Group comprises the older division of the Dalradian; these occur along the northern margin of the national park. The younger Southern Highland Group forms the larger part of the park.
A variety of igneous rocks intrude the Dalradian sequence, including dykes, sills and plutons. Along the Highland Boundary Fault is a zone of metamorphosed rocks grouped as the Highland Border Complex and dated to the Cambrian and Ordovician periods. There are outliers of Carboniferous age rocks to the east and west of Loch Lomond.
Landforms reflect the significant impact of glaciation on the area during the last and previous ice ages.
The geology of the New Forest comprises a succession of largely flat-lying sedimentary rocks of Palaeogene age laid down between about 66 and about 34 million years ago, in the centre of a sedimentary basin known as the Hampshire Basin. These are overlain by a variety of superficial deposits. There are few rock exposures beyond limited outcrops in the banks of streams, the faces of working and abandoned gravel pits, and some low coastal cliffs. However, temporary exposures during construction works and boreholes have added to earth scientists’ understanding of the area.
In broad terms, the oldest rocks occupy the northern part of the area with progressively younger rocks seen to the south, approaching the Solent coast. As elsewhere, the names of particular rock strata (and higher level groups) sometimes change as geological knowledge expands and research correlates strata in one area with those of another. Older literature and maps may therefore refer to different names.
The highest parts of the Northumberland National Park are formed from a Devonian granite intrusion surrounded by a suite of extrusive igneous rocks from the Silurian and Devonian periods, between them creating the Cheviot Hills. The rest of the park is formed from gently dipping sedimentary rocks of Carboniferous age. The sedimentary rocks are intruded by the Great Whin Sill along the outcrop of which the Romans built sections of Hadrian's Wall. Zones of thermal metamorphism affect the sedimentary rocks adjacent to the igneous intrusions. Extensive re-moulding of the land surface took place during the Quaternary ice ages. [8]
The North York Moors National Park is formed from Jurassic age sandstones, mudstones and siltstones and limestones, many of which are well exposed in the cliffs of the park's North Sea coast (which is often referred to as the 'Dinosaur Coast'. The southerly regional dip of the rock strata has produced a landscape of multiple scarps and dip-slopes with the older rocks exposed in the north and progressively younger ones to the south such as the Tabular Hills formed from late Jurassic age limestones. The moors were not glaciated during the last ice age but ice sheets surrounded the area and led to the formation of glacial lakes around the hills and the development of major meltwater channels such as Newton Dale. [9]
The Peak District is split between the Dark Peak in the north, and around the park's eastern and western margins, and the White Peak which forms the core of the park in the south, corresponding broadly to the major exposed areas of the Millstone Grit and the Carboniferous Limestone. The exposed central limestone strata and surrounding gritstone edges are the result of erosion of the Derbyshire Dome formation.
The Pembrokeshire Coast National Park is formed from igneous, sedimentary and metamorphic rocks from the late Precambrian through all Palaeozoic periods to the Carboniferous. The coastal cliffs expose each of these rocks extensively.
The geology of Snowdonia is largely characterized by a succession of sedimentary and extrusive igneous rocks of Cambrian, Ordovician and Silurian age which were faulted and folded during the Caledonian Orogeny. West of Harlech is an area of much younger rocks though these are wholly concealed by superficial deposits.
Mining and quarrying have played a significant part in the economy of the area, notably for slate around Llanberis, Bethesda and Ffestiniog.
The South Downs National Park is centred on the South Downs which are formed from chalk which dates from the Cretaceous period [10] though it extends into the Weald which is formed from older rocks such as the Upper and Lower Greensands, Wealden Group sandstones and mudstones and Gault clay. The Malmstone is a chalky sandstone which characterises parts of the national park in East Hampshire and West Sussex [11]
The Yorkshire Dales National Park is formed principally from sandstones, mudstones and limestones of Carboniferous age though includes Silurian sandstones and shales in the Howgill Fells in the northwest part of the park. The geological succession of the Yorkshire Dales is that of Carboniferous Limestone, overlain by the Yoredale Series which is in turn overlain by the Millstone Grit. The V-profile river valleys that had been cut into this upland area during the previous tens of millions of years were modified by widespread glaciation during successive Quaternary ice ages resulting in the present day landforms. [12] Extensive development of karst resulted in England's greatest concentration of limestone pavements and cave systems including the Three Counties System, which is the UK's longest at over 86km. [13]
The Llano Uplift is a geologically ancient, low geologic dome that is about 90 miles (140 km) in diameter and located mostly in Llano, Mason, San Saba, Gillespie, and Blanco counties, Texas. It consists of an island-like exposure of Precambrian igneous and metamorphic rocks surrounded by outcrops of Paleozoic and Cretaceous sedimentary strata. At their widest, the exposed Precambrian rocks extend about 65 miles (105 km) westward from the valley of the Colorado River and beneath a broad, gentle topographic basin drained by the Llano River. The subdued topographic basin is underlain by Precambrian rocks and bordered by a discontinuous rim of flat-topped hills. These hills are the dissected edge of the Edwards Plateau, which consist of overlying Cretaceous sedimentary strata. Within this basin and along its margin are down-faulted blocks and erosional remnants of Paleozoic strata which form prominent hills.
The exposed geology of the Yosemite area includes primarily granitic rocks with some older metamorphic rock. The first rocks were laid down in Precambrian times, when the area around Yosemite National Park was on the edge of a very young North American continent. The sediment that formed the area first settled in the waters of a shallow sea, and compressive forces from a subduction zone in the mid-Paleozoic fused the seabed rocks and sediments, appending them to the continent. Heat generated from the subduction created island arcs of volcanoes that were also thrust into the area of the park. In time, the igneous and sedimentary rocks of the area were later heavily metamorphosed.
The geology of Shropshire is very diverse with a large number of periods being represented at outcrop. The bedrock consists principally of sedimentary rocks of Palaeozoic and Mesozoic age, surrounding restricted areas of Precambrian metasedimentary and metavolcanic rocks. The county hosts in its Quaternary deposits and landforms, a significant record of recent glaciation. The exploitation of the Coal Measures and other Carboniferous age strata in the Ironbridge area made it one of the birthplaces of the Industrial Revolution. There is also a large amount of mineral wealth in the county, including lead and baryte. Quarrying is still active, with limestone for cement manufacture and concrete aggregate, sandstone, greywacke and dolerite for road aggregate, and sand and gravel for aggregate and drainage filters. Groundwater is an equally important economic resource.
The geology of Scotland is unusually varied for a country of its size, with a large number of different geological features. There are three main geographical sub-divisions: the Highlands and Islands is a diverse area which lies to the north and west of the Highland Boundary Fault; the Central Lowlands is a rift valley mainly comprising Palaeozoic formations; and the Southern Uplands, which lie south of the Southern Uplands Fault, are largely composed of Silurian deposits.
The geology of England is mainly sedimentary. The youngest rocks are in the south east around London, progressing in age in a north westerly direction. The Tees–Exe line marks the division between younger, softer and low-lying rocks in the south east and the generally older and harder rocks of the north and west which give rise to higher relief in those regions. The geology of England is recognisable in the landscape of its counties, the building materials of its towns and its regional extractive industries.
The geology of Wales is complex and varied; its study has been of considerable historical significance in the development of geology as a science. All geological periods from the Cryogenian to the Jurassic are represented at outcrop, whilst younger sedimentary rocks occur beneath the seas immediately off the Welsh coast. The effects of two mountain-building episodes have left their mark in the faulting and folding of much of the Palaeozoic rock sequence. Superficial deposits and landforms created during the present Quaternary period by water and ice are also plentiful and contribute to a remarkably diverse landscape of mountains, hills and coastal plains.
The geology of County Durham in northeast England consists of a basement of Lower Palaeozoic rocks overlain by a varying thickness of Carboniferous and Permo-Triassic sedimentary rocks which dip generally eastwards towards the North Sea. These have been intruded by a pluton, sills and dykes at various times from the Devonian Period to the Palaeogene. The whole is overlain by a suite of unconsolidated deposits of Quaternary age arising from glaciation and from other processes operating during the post-glacial period to the present. The geological interest of the west of the county was recognised by the designation in 2003 of the North Pennines Area of Outstanding Natural Beauty as a European Geopark.
The main points that are discussed in the geology of Iran include the study of the geological and structural units or zones; stratigraphy; magmatism and igneous rocks; ophiolite series and ultramafic rocks; and orogenic events in Iran.
The geology of Northumberland in northeast England includes a mix of sedimentary, intrusive and extrusive igneous rocks from the Palaeozoic and Cenozoic eras. Devonian age volcanic rocks and a granite pluton form the Cheviot massif. The geology of the rest of the county is characterised largely by a thick sequence of sedimentary rocks of Carboniferous age. These are intruded by both Permian and Palaeogene dykes and sills and the whole is overlain by unconsolidated sediments from the last ice age and the post-glacial period. The Whin Sill makes a significant impact on Northumberland's character and the former working of the Northumberland Coalfield significantly influenced the development of the county's economy. The county's geology contributes to a series of significant landscape features around which the Northumberland National Park was designated.
The geology of the Isle of Man consists primarily of a thick pile of sedimentary rocks dating from the Ordovician period, together with smaller areas of later sedimentary and extrusive igneous strata. The older strata was folded and faulted during the Caledonian and Acadian orogenies The bedrock is overlain by a range of glacial and post-glacial deposits. Igneous intrusions in the form of dykes and plutons are common, some associated with mineralisation which spawned a minor metal mining industry.
This article describes the geology of the Cairngorms National Park, an area in the Highlands of Scotland designated as a national park in 2003 and extended in 2010. The Cairngorms National Park extends across a much wider area than the Cairngorms massif itself and hence displays rather more varied geology.
The geology of England's Lake District is dominated by sedimentary and volcanic rocks of mainly Ordovician age underpinned by large granitic intrusions. Younger sedimentary sequences outcrop on the edges of the Lake District area, with Silurian to the south, Carboniferous to the north, east, and west and Permo-Triassic to the west and east. The entire area was covered by a Mesozoic sequence that was eroded off during the Paleogene uplift related to the opening of the North Atlantic. During the Quaternary the area was affected by repeated glaciations, which sculpted the current mountainous landscape.
The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.
Geology of Latvia includes an ancient Archean and Proterozoic crystalline basement overlain with Neoproterozoic volcanic rocks and numerous sedimentary rock sequences from the Paleozoic, some from the Mesozoic and many from the recent Quaternary past. Latvia is a country in the Baltic region of Northern Europe.
The geology of Newfoundland and Labrador includes basement rocks formed as part of the Grenville Province in the west and Labrador and the Avalonian microcontinent in the east. Extensive tectonic changes, metamorphism and volcanic activity have formed the region throughout Earth history.
The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.
This article describes the geology of Dartmoor National Park in Devon, in south-west England. Dartmoor gained national park status in 1951 but the designated area of 954 km2 (368 sq mi) extends beyond the upland of Dartmoor itself to include much of the surrounding land, particularly in the northeast. The geology of the national park consists of a 625 km2 (241 sq mi) core of granite intruded during the early Permian period into a sequence of sedimentary rocks originating in the Devonian and Carboniferous periods. These rocks were faulted and folded, sometimes, intensely, during the Variscan orogeny. Thermal metamorphism has also taken place around the margins of the granite pluton altering the character of the sedimentary rocks whilst mineral veins were emplaced within the granite. A small outlier of Palaeogene sediments occurs on the eastern boundary of the national park.
The geology of Loch Lomond and The Trossachs National Park in the southwestern part of the Scottish Highlands consists largely of Neoproterozoic and Palaeozoic bedrock faulted and folded and subjected to low grade metamorphism during the Caledonian orogeny. These older rocks, assigned to the Dalradian Supergroup, lie to the northwest of the northeast – southwest aligned Highland Boundary Fault which defines the southern edge of the Highlands. A part of this mountainous park extends south of this major geological divide into an area characterised by younger Devonian rocks which are assigned to the Old Red Sandstone.
The geology of Northumberland National Park in northeast England includes a mix of sedimentary, intrusive and extrusive igneous rocks from the Palaeozoic and Cenozoic eras. Devonian age volcanic rocks and a granite pluton form the Cheviot massif. The geology of the rest of the national park is characterised largely by a thick sequence of sedimentary rocks of Carboniferous age. These are intruded by Permian dykes and sills, of which the Whin Sill makes a significant impact in the south of the park. Further dykes were intruded during the Palaeogene period. The whole is overlain by unconsolidated sediments from the last ice age and the post-glacial period.
The geology of Pembrokeshire in Wales inevitably includes the geology of the Pembrokeshire Coast National Park which extends around the larger part of the county's coastline and where the majority of rock outcrops are to be seen. Pembrokeshire's bedrock geology is largely formed from a sequence of sedimentary and igneous rocks originating during the late Precambrian and the Palaeozoic era, namely the Ediacaran, Cambrian, Ordovician, Silurian, Devonian and Carboniferous periods, i.e. between 635 and 299 Ma. The older rocks in the north of the county display patterns of faulting and folding associated with the Caledonian Orogeny. On the other hand, the late Palaeozoic rocks to the south owe their fold patterns and deformation to the later Variscan Orogeny.
{{cite web}}
: CS1 maint: unfit URL (link)