Glyceroneogenesis

Last updated

Glyceroneogenesis is a metabolic pathway which synthesizes glycerol 3-phosphate (used to form triglycerides) from precursors other than glucose. [1] Usually, glycerol 3-phosphate is generated from glucose by glycolysis , in the liquid of the cell's cytoplasm (the cytosol ). Glyceroneogenesis is used when the concentrations of glucose in the cytosol are low, and typically uses pyruvate as the precursor, but can also use alanine, glutamine, or any substances from the TCA cycle. The main regulator enzyme for this pathway is an enzyme called phosphoenolpyruvate carboxykinase (PEPC-K), which catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. [1] Glyceroneogenesis is observed mainly in adipose tissue, and in the liver. A significant biochemical pathway regulates cytosolic lipid levels. Intense suppression of glyceroneogenesis may lead to metabolic disorders such as type 2 diabetes. [2]

Contents

Summary

Triglycerides are built from three fatty acids, esterified onto each of three hydroxy groups of glycerol, which is derived from glycerol 3-phosphate. In mammals, glycerol 3-phosphate is usually synthesized through glycolysis, a metabolic pathway that degrades glucose into fructose 1,6-bisphosphate and then into two molecules of dihydroxyacetone phosphate, which beget glycerol 3-phosphate and glyceraldehyde 3-phosphate. [1] When an organism is deficient in glucose, from (for example) fasting or a low carbohydrate intake, glycerol 3-phosphate is generated by glyceroneogenesis instead. As well as synthesizing lipids for use in other metabolic processes, glyceroneogenesis regulates lipid levels in the cytosol. [1]

Metabolic pathway

The gluconeogenesis pathway Gluconeogenesis pathway.png
The gluconeogenesis pathway
Dihydroxyacetone phosphate to glycerol 3-phosphate Dihydroxyacetone phosphate to glycerol 3-phosphate en.svg
Dihydroxyacetone phosphate to glycerol 3-phosphate

The main precursors of glyceroneogenesis are pyruvate, lactate, glutamine, and alanine. Glyceroneogenesis is also known as the branched pathway of gluconeogenesis because its first few steps are the same.

When pyruvate or lactate is used as the precursor for glycerol 3-phosphate, glyceroneogenesis follows the same pathway as gluconeogenesis until it generates dihydroxyacetone phosphate. Lactate catalyzed by lactate dehydrogenase will form pyruvate at the expense of NAD+. By using one ATP and bicarbonate, pyruvate will be converted to oxaloacetate, catalysed by pyruvate carboxylase. The PEPC-K enzyme will catalyze oxaloacetate to generate phosphoenolpyruvate. This phosphorylation and decarboxylation of oxaloacetate is a significant step in glyceroneogenesis, since it regulates the entire pathway. After the production of phosphoenolpyruvate, gluconeogenesis will continue until dihydroxyacetone phosphate is generated, which produces 2-phosphoglycerate, 3-phosphoglycerate, 1,3-bisphosphoglycerate and glyceraldehyde 3-phosphate as intermediates. When dihydroxyacetone phosphate is produced, glyceroneogenesis will branch off from gluconeogenesis. [1] With the expense of NADH, dihydroxyacetone phosphate will convert to glycerol 3-phosphate, which is the final product of glyceroneogenesis. In addition, triglyceride can be generated by re-esterifying 3 fatty acid chains on glycerol 3-phosphate. Instead of producing fructose 1,6- bisphosphate as gluconeogenesis does, glyceroneogenesis converts dihydroxyacetone phosphate to glycerol 3-phosphate.

Alanine can also be used as a precursor of glyceroneogenesis because alanine can be degraded to pyruvate. Alanine will degrade to pyruvate by transferring its amino group to 2-oxoglutarate with an enzyme called alanine aminotransferase. Alanine aminotransferase cleaves off the amino group from alanine and binds it to 2-oxoglutarate, generating pyruvate from alanine, and glutamate from 2-oxoglutarate. Pyruvate generated from alanine will enter glyceroneogenesis and generate glycerol 3-phosphate.

Glutamate can also enter glyceroneogenesis. Since the key reaction of glyceroneogenesis is the decarboxylation and phosphorylation of oxaloacetate to phosphoenolpyruvate, in theory any biochemical pathway which generates oxaloacetate is related to glyceroneogenesis. For example, glutamate can generate oxaloacetate in 2 steps. Firstly, glutamate can be converted to 2-oxoglutarate with the expense of NAD+ and H2O with the help of glutamate dehydrogenase. Secondly, 2-oxoglutarate can enter the tricarboxylic acid cycle to generate oxaloacetate. Therefore, theoretically any metabolites in the TCA cycle or any metabolites generating the metabolites of the TCA cycle can be used as a precursor of glyceroneogenesis, but glutamate is the only precursor confirmed.

Regulation

Phosphoenolpyruvate carboxykinase (PEPC-K)

Glyceroneogenesis can be regulated at two reaction pathways. First, it can be held at the decarboxylation of oxaloacetate to phosphoenolpyruvate. Secondly, the TCA cycle can affect glyceroneogenesis when the glutamate or substrates in the TCA cycle are being used as a precursor. Decarboxylation of oxaloacetate to phosphoenolpyruvate is catalyzed by PEPC-K, the essential enzyme which regulates glyceroneogenesis. [1] Increases in PEPC-K levels or overexpression of the gene that codes for PEPC-K will increase glyceroneogenesis. Also, oxaloacetate can be decarboxylated to phosphoenolpyruvate when more PEPC-K can catalyze the reaction.

Gene expression of PEPC-K can be suppressed by norepinephrine, glucocorticoids, and insulin. [3] Norepinephrine is a neurotransmitter which decreases the activity of PEPC-K when the cell is in a cold environment. Glucocorticoids are steroid hormones involved in the reciprocal regulation of glyceroneogenesis in the liver and adipose tissues. Through a poorly-understood mechanism, they induce transcription of PEPC-K in the liver while decreasing transcription in adipose tissues. Insulin is a peptide hormone that causes cells to take in glucose. Through glyceroneogenesis, insulin down-regulates the expression of PEPC-K in both liver and adipose tissues.

TCA cycle

When metabolites from the TCA cycle or glutamate are used as a precursor for glyceroneogenesis, the regulator in the TCA cycle can also cause fluctuations in the levels of products formed by glyceroneogenesis. Regulation of the TCA cycle is mainly determined by product inhibition and substrate availability. The TCA cycle will slow down when the environment contains excess product, or deficiency of the substrate such as ADP and NAD+.

Location

Since glyceroneogenesis is related to lipid regulation, it can be found in adipose tissue and the liver. In adipose tissue, glyceroneogenesis restrains the release of free fatty acids (FFA) by re-esterifying them. In the liver, triglycerides are synthesized for lipid distribution.

White adipose tissue

White adipose tissue, also known as white fat, is one two types of adipose tissue in mammals. White adipose tissue stores energy in the form of triglycerides, which can be broken down to free fatty acids on demand. Its normal function is to store free fatty acids as triglycerides within the tissue. When glucose is deficient, in situations like fasting, white adipose tissue generates glycerol 3-phosphate. [3]

Brown adipose tissue

Brown adipose tissue stores free fatty acids rather than triglycerides, and is especially abundant in newborn and hibernating mammals. Brown adipose tissue is involved in thermogenesis, and has a considerably higher glyceroneogenesis activity. [3] Brown adipose tissue contains more glyceroneogenesis-related enzymes, in particular PEPC-K and glycerol kinase. PEPC-K is around 10 times more active than in white adipose tissue, and is the key regulatory enzyme that controls the activity of the pathway. [3] Glycerol kinase phosphorylates glycerol to generate glycerol 3-phosphate, which is used to build triglycerides. An increase in the activity of glycerol kinase will increase the production of glycerol 3-phosphate.

Glyceroneogenesis in brown adipose tissue contributes to thermogenesis, a process that generates heat in warm-blooded animals by delivering free fatty acids to the mitochondria. [3] In normal conditions, thermogenesis is down-regulated by the low concentration of free fatty acids in the cytosol, because glyceroneogenesis re-esterifies fatty acids to triglycerides. When exposed to cold, a neurotransmitter hormone called norepinephrine suppresses the activity of PEPC-K and thus the glyceroneogenesis re-esterification, increasing the availability of free fatty acids within the cell. [3] Excess free fatty acids in the cytosol will consequently be delivered to the mitochondria for thermogenesis. [4]

Liver

Although glyceroneogenesis was first found in adipose tissues, it was not recognized in the liver until 1998. [ citation needed ] This finding was unexpected because triglyceride synthesis in the liver was thought not to occur due to the amount of gluconeogenesis taking place[ clarification needed ], and because the liver was believed to have sufficient glycerol 3-phosphate collected from the bloodstream. Several experiments using stable isotopes to track the glycerol in the liver and bloodstream, showed that 65% of the glycerol backbone of triglycerides in the bloodstream is synthesized in the liver. [3] It was subsequently found that the liver synthesizes more than half of the glycerol mammals need to regulate lipids.

Glyceroneogenesis in the liver and adipose tissues regulate lipid metabolism in opposite ways. Lipids as triglycerides are released from the liver, while glyceroneogenesis restrains the fatty acid release from adipose tissues by re-esterifying them. [3] When the lipid concentration in the blood is relatively high, glyceroneogenesis in the liver will be down-regulated to stop the synthesis of triglycerides, but glyceroneogenesis in adipose tissues will be induced in order to restrain the release of free fatty acid to the bloodstream. Conversely, glyceroneogenesis is induced in the liver and suppressed in adipose tissues when the blood lipid level is low. Although the reciprocal regulation of glyceroneogenesis is not well understood, a hormone called glucocorticoid is involved in the regulation. [4] Glucocorticoids induce gene transcription of PEPC-K in liver but repress the transcription in adipose tissues.

Disease

Type 2 Diabetes

Failure in the regulation of glyceroneogenesis may lead to type 2 diabetes, a metabolic disorder that results in high levels of blood glucose and blood lipid. [5] Type 2 diabetes, in addition to a decreased sensitivity to insulin, is associated with the overproduction of triglycerides in the liver, due to excessively active glyceroneogenesis and excess release of fatty acids from adipose tissues. Glyceroneogenesis can be regulated by controlling the gene expression of PEPC-K.

Overexpressing PEPC-K in the liver will overproduce triglycerides and elevate the lipid level in the bloodstream, increasing the risk of fatty liver disease (hepatic steatosis). Conversely, in adipose tissue, down-regulated glyceroneogenesis may decrease de novo lipogenesis, increasing the export of free fatty acids to the bloodstream, leading to lipodystrophy. Both of these conditions are highly associated with type 2 diabetes.

Treatment

Regulation of glyceroneogenesis is a therapeutic target of type 2 diabetes treatment, specifically inhibiting it in the liver and increasing it in adipose tissues. Insulin down-regulates glyceroneogenesis in the liver, but it also suppresses it in adipose tissue. To restrict the release of free fatty acids from adipose tissues, glyceroneogenesis must be increased so they are re-esterified. Thiazolidinedione is a substance that only affects glyceroneogenesis in adipose tissue by increasing transcription of PEPC-K to up-regulate glyceroneogenesis. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol. The chemical energy released is available in the form of ATP. The Krebs cycle is used by organisms that respire to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a "cycle", it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is an intermediate in several metabolic pathways throughout the cell.

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.

<span class="mw-page-title-main">Anabolism</span> Metabolic pathways to build molecules

Anabolism is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catabolism is the breaking-down aspect. Anabolism is usually synonymous with biosynthesis.

Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

<span class="mw-page-title-main">Lipolysis</span> Metabolism involving breakdown of lipids

Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important regulatory hormone in lipolysis is insulin; lipolysis can only occur when insulin action falls to low levels, as occurs during fasting. Other hormones that affect lipolysis include leptin, glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.

Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms.

<span class="mw-page-title-main">Oxaloacetic acid</span> Organic compound

Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is the anion with the formula HOCH2C(O)CH2OPO32-. This anion is involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis. It is the phosphate ester of dihydroxyacetone.

<span class="mw-page-title-main">Pyruvate carboxylase</span> Enzyme

Pyruvate carboxylase (PC) encoded by the gene PC is an enzyme of the ligase class that catalyzes the physiologically irreversible carboxylation of pyruvate to form oxaloacetate (OAA).

<span class="mw-page-title-main">Transaminase</span> Class of enzymes

Transaminases or aminotransferases are enzymes that catalyze a transamination reaction between an amino acid and an α-keto acid. They are important in the synthesis of amino acids, which form proteins.

In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the endoplasmic reticulum membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in liver and adipose tissue. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. A review on lipogenesis in the brain was published in 2008 by Lopez and Vidal-Puig. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.

<span class="mw-page-title-main">Phosphoenolpyruvate carboxykinase</span> Enzyme

Phosphoenolpyruvate carboxykinase is an enzyme in the lyase family used in the metabolic pathway of gluconeogenesis. It converts oxaloacetate into phosphoenolpyruvate and carbon dioxide.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

Starvation response in animals is a set of adaptive biochemical and physiological changes, triggered by lack of food or extreme weight loss, in which the body seeks to conserve energy by reducing metabolic rate and/or non-resting energy expenditure to prolong survival and preserve body fat and lean mass.

<span class="mw-page-title-main">Fructose 1-phosphate</span> Chemical compound

Fructose-1-phosphate is a derivative of fructose. It is generated mainly by hepatic fructokinase but is also generated in smaller amounts in the small intestinal mucosa and proximal epithelium of the renal tubule. It is an important intermediate of glucose metabolism. Because fructokinase has a high Vmax fructose entering cells is quickly phosphorylated to fructose 1-phosphate. In this form it is usually accumulated in the liver until it undergoes further conversion by aldolase B.

Fructolysis refers to the metabolism of fructose from dietary sources. Though the metabolism of glucose through glycolysis uses many of the same enzymes and intermediate structures as those in fructolysis, the two sugars have very different metabolic fates in human metabolism. Under one percent of ingested fructose is directly converted to plasma triglyceride. 29% - 54% of fructose is converted in liver to glucose, and about a quarter of fructose is converted to lactate. 15% - 18% is converted to glycogen. Glucose and lactate are then used normally as energy to fuel cells all over the body.

<span class="mw-page-title-main">PCK2</span> Protein-coding gene in the species Homo sapiens

Phosphoenolpyruvate carboxykinase 2, mitochondrial, is an isozyme of phosphoenolpyruvate carboxykinase that in humans is encoded by the PCK2 gene on chromosome 14. This gene encodes a mitochondrial enzyme that catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) in the presence of guanosine triphosphate (GTP). A cytosolic form of this protein is encoded by a different gene and is the key enzyme of gluconeogenesis in the liver. Alternatively spliced transcript variants have been described.[provided by RefSeq, Apr 2014]

References

  1. 1 2 3 4 5 6 Nye CK, Hanson RW, Kalhan SC (October 2008). "Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat". The Journal of Biological Chemistry. 283 (41): 27565–74. doi: 10.1074/jbc.M804393200 . PMC   2562054 . PMID   18662986.
  2. Jeoung NH, Harris RA (October 2010). "Role of pyruvate dehydrogenase kinase 4 in the regulation of blood glucose levels". Korean Diabetes Journal. 34 (5): 274–83. doi:10.4093/kdj.2010.34.5.274. PMC   2972486 . PMID   21076574.
  3. 1 2 3 4 5 6 7 8 Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW (August 2003). "Glyceroneogenesis and the triglyceride/fatty acid cycle". The Journal of Biological Chemistry. 278 (33): 30413–6. doi: 10.1074/jbc.R300017200 . PMID   12788931.
  4. 1 2 Chaves VE, Frasson D, Martins-Santos ME, Boschini RP, Garófalo MA, Festuccia WT, Kettelhut IC, Migliorini RH (October 2006). "Glyceroneogenesis is reduced and glucose uptake is increased in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation". The Journal of Nutrition. 136 (10): 2475–80. doi: 10.1093/jn/136.10.2475 . PMID   16988112.
  5. 1 2 Beale EG, Hammer RE, Antoine B, Forest C (April 2004). "Disregulated glyceroneogenesis: PCK1 as candidate diabetes and obesity gene". Trends in Endocrinology and Metabolism. 15 (3): 129–35. doi:10.1016/j.tem.2004.02.006. PMID   15046742. S2CID   9194909.