This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations .(February 2022) |
In mathematical logic, institutional model theory generalizes a large portion of first-order model theory to an arbitrary logical system.
The notion of "logical system" here is formalized as an institution. Institutions constitute a model-oriented meta-theory on logical systems similar to how the theory of rings and modules constitute a meta-theory for classical linear algebra. Another analogy can be made with universal algebra versus groups, rings, modules etc. By abstracting away from the realities of the actual conventional logics, it can be noticed that institution theory comes in fact closer to the realities of non-conventional logics.
Institutional model theory analyzes and generalizes classical model-theoretic notions and results, like
For each concept and theorem, the infrastructure and properties required are analyzed and formulated as conditions on institutions, thus providing a detailed insight to which properties of first-order logic they rely on and how much they can be generalized to other logics.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.
Alfred Tarski was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy.
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.
In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax.
In logic, a logical framework provides a means to define a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory. This approach has been used successfully for (interactive) automated theorem proving. The first logical framework was Automath; however, the name of the idea comes from the more widely known Edinburgh Logical Framework, LF. Several more recent proof tools like Isabelle are based on this idea. Unlike a direct embedding, the logical framework approach allows many logics to be embedded in the same type system.
Joseph Amadee Goguen was an American computer scientist. He was professor of Computer Science at the University of California and University of Oxford, and held research positions at IBM and SRI International.
The notion of institution was created by Joseph Goguen and Rod Burstall in the late 1970s, in order to deal with the "population explosion among the logical systems used in computer science". The notion attempts to "formalize the informal" concept of logical system.
The word 'algebra' is used for various branches and structures of mathematics. For their overview, see Algebra.
Non-classical logics are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.
Originally the expression Universal logic was coined by analogy with the expression Universal algebra. The first idea was to develop Universal logic as a field of logic that studies the features common to all logical systems, aiming to be to logic what Universal algebra is to algebra. A number of approaches to universal logic in this sense have been proposed since the twentieth century, using model theoretic, and categorical approaches. But then the Univeral Logic Project developed as a general universal logic project including this mathematical project but also many other logical activities.
Rami Grossberg is a full professor of mathematics at Carnegie Mellon University and works in model theory.
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.
The ACM–IEEE Symposium on Logic in Computer Science (LICS) is an annual academic conference on the theory and practice of computer science in relation to mathematical logic. Extended versions of selected papers of each year's conference appear in renowned international journals such as Logical Methods in Computer Science and ACM Transactions on Computational Logic.
In mathematical logic, Lindström's theorem states that first-order logic is the strongest logic having both the (countable) compactness property and the (downward) Löwenheim–Skolem property.
In the mathematical field of model theory, a theory is called stable if it satisfies certain combinatorial restrictions on its complexity. Stable theories are rooted in the proof of Morley's categoricity theorem and were extensively studied as part of Saharon Shelah's classification theory, which showed a dichotomy that either the models of a theory admit a nice classification or the models are too numerous to have any hope of a reasonable classification. A first step of this program was showing that if a theory is not stable then its models are too numerous to classify.
In mathematical logic, abstract model theory is a generalization of model theory that studies the general properties of extensions of first-order logic and their models.
Mathematics is a field of study that investigates topics such as number, space, structure, and change.
Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.