Joint (geology)

Last updated
Horizontal joints in the sedimentary rocks of the foreground and a more varied set of joints in the granitic rocks in the background. Image from the Kazakh Uplands in Balkhash District, Kazakhstan. PICT1709.JPG
Horizontal joints in the sedimentary rocks of the foreground and a more varied set of joints in the granitic rocks in the background. Image from the Kazakh Uplands in Balkhash District, Kazakhstan.
Orthogonal joint sets on a bedding plane in flagstones, Caithness, Scotland Joints Caithness.JPG
Orthogonal joint sets on a bedding plane in flagstones, Caithness, Scotland
Joints in the Almo Pluton, City of Rocks National Reserve, Idaho. Joints City of Rocks NR.jpg
Joints in the Almo Pluton, City of Rocks National Reserve, Idaho.
A rock in Abisko fractured along existing joints possibly by mechanical frost weathering Abiskorock.JPG
A rock in Abisko fractured along existing joints possibly by mechanical frost weathering
Columnar jointed basalt in Turkey Boyabat.jpg
Columnar jointed basalt in Turkey
Columnar jointing in basalt, Marte Vallis, Mars Columnar jointing, Marte Vallis.jpg
Columnar jointing in basalt, Marte Vallis, Mars
Recent tectonic joint intersects older exfoliation joints in granite gneiss, Lizard Rock, Parra Wirra, South Australia. Recent joint intersection.JPG
Recent tectonic joint intersects older exfoliation joints in granite gneiss, Lizard Rock, Parra Wirra, South Australia.
Joint spacing in mechanically stronger limestone beds shows increase with bed thickness, Lilstock Bay, Somerset Joint spacing varying with bed thickness.jpg
Joint spacing in mechanically stronger limestone beds shows increase with bed thickness, Lilstock Bay, Somerset
Roadside weathered diorite outcrop along the Baguio-Bua-Itogon Road in the Philippines showing joints. Jointed diorite outcrop, Dalupirip, Itogon, Benguet 01.jpg
Roadside weathered diorite outcrop along the Baguio-Bua-Itogon Road in the Philippines showing joints.

A joint is a break (fracture) of natural origin in a layer or body of rock that lacks visible or measurable movement parallel to the surface (plane) of the fracture ("Mode 1" Fracture). Although joints can occur singly, they most frequently appear as joint sets and systems. A joint set is a family of parallel, evenly spaced joints that can be identified through mapping and analysis of their orientations, spacing, and physical properties. A joint system consists of two or more intersecting joint sets. [1] [2] [3]

Contents

The distinction between joints and faults hinges on the terms visible or measurable, a difference that depends on the scale of observation. Faults differ from joints in that they exhibit visible or measurable lateral movement between the opposite surfaces of the fracture ("Mode 2" and "Mode 3" Fractures). Thus a joint may be created by either strict movement of a rock layer or body perpendicular to the fracture or by varying degrees of lateral displacement parallel to the surface (plane) of the fracture that remains "invisible" at the scale of observation. [1] [2] [3]

Joints are among the most universal geologic structures, found in almost every exposure of rock. They vary greatly in appearance, dimensions, and arrangement, and occur in quite different tectonic environments. Often, the specific origin of the stresses that created certain joints and associated joint sets can be quite ambiguous, unclear, and sometimes controversial. The most prominent joints occur in the most well-consolidated, lithified, and highly competent rocks, such as sandstone, limestone, quartzite, and granite. Joints may be open fractures or filled by various materials. Joints infilled by precipitated minerals are called veins and joints filled by solidified magma are called dikes. [1] [2]

Formation

Joints arise from brittle fracture of a rock or layer due to tensile stress. This stress may be imposed from outside; for example, by the stretching of layers, the rise of pore fluid pressure, or shrinkage caused by the cooling or desiccation of a rock body or layer whose outside boundaries remained fixed. [1] [2]

When tensional stresses stretch a body or layer of rock such that its tensile strength is exceeded, it breaks. When this happens the rock fractures in a plane parallel to the maximum principal stress and perpendicular to the minimum principal stress (the direction in which the rock is being stretched). This leads to the development of a single sub-parallel joint set. Continued deformation may lead to development of one or more additional joint sets. The presence of the first set strongly affects the stress orientation in the rock layer, often causing subsequent sets to form at a high angle, often 90°, to the first set. [1] [2]

Types

Joints are classified by their geometry or by the processes that formed them. [1] [2] [4]

By geometry

The geometry of joints refers to the orientation of joints as either plotted on stereonets and rose-diagrams or observed in rock exposures. In terms of geometry, three major types of joints, nonsystematic joints, systematic joints, and columnar jointing are recognized. [2] [4]

Nonsystematic

Nonsystematic joints are joints that are so irregular in form, spacing, and orientation that they cannot be readily grouped into distinctive, through-going joint sets. [2] [4]

Systematic

Systematic joints are planar, parallel, joints that can be traced for some distance, and occur at regularly, evenly spaced distances on the order of centimeters, meters, tens of meters, or even hundreds of meters. As a result, they occur as families of joints that form recognizable joint sets. Typically, exposures or outcrops within a given area or region of study contains two or more sets of systematic joints, each with its own distinctive properties such as orientation and spacing, that intersect to form well-defined joint systems. [2] [4]

Based upon the angle at which joint sets of systematic joints intersect to form a joint system, systematic joints can be subdivided into conjugate and orthogonal joint sets. The angles at which joint sets within a joint system commonly intersect are called dihedral angles by structural geologists. When the dihedral angles are nearly 90° within a joint system, the joint sets are known as orthogonal joint sets. When the dihedral angles are from 30 to 60° within a joint system, the joint sets are known as conjugate joint sets. [2] [4]

Within regions that have experienced tectonic deformation, systematic joints are typically associated with either layered or bedded strata that have been folded into anticlines and synclines. Such joints can be classified according to their orientation in respect to the axial planes of the folds as they often commonly form in a predictable pattern with respect to the hinge trends of folded strata. Based upon their orientation to the axial planes and axes of folds, the types of systematic joints are:

  • Longitudinal joints Joints which are roughly parallel to fold axes and often fan around the fold.
  • Cross-joints Joints which are approximately perpendicular to fold axes.
  • Diagonal joints Joints which typically occur as conjugate joint sets that trend oblique to the fold axes.
  • Strike joints Joints which trend parallel to the strike of the axial plane of a fold.
  • Cross-strike joints Joints which cut across the axial plane of a fold. [2] [4]

Columnar

Columnar jointing is a distinctive type of joints that join together at triple junctions either at or about 120° angles. These joints split a rock body into long, prisms or columns. Typically, such columns are hexagonal, although 3-, 4-, 5- and 7-sided columns are relatively common. The diameter of these prismatic columns ranges from a few centimeters to several metres. They are often oriented perpendicular to either the upper surface and base of lava flows and the contact of the tabular igneous bodies with the surrounding rock. This type of jointing is typical of thick lava flows and shallow dikes and sills. [5] Columnar jointing is also known as either columnar structure, prismatic joints, or prismatic jointing. [6] Rare cases of columnar jointing have also been reported from sedimentary strata. [7]

By formation

Joints can be classified according to their origin, under the labels of tectonics, hydraulics, exfoliation, unloading (release), and cooling. Different authors have proposed contradictory hypotheses for the same joint sets and types. And, joints in the same outcrop may form at different times under varied circumstances.

Tectonic

Tectonic joints are joints formed when the relative displacement of the joint walls is normal to its plane as the result of brittle deformation of bedrock in response to regional or local tectonic deformation of bedrock. Such joints form when directed tectonic stress causes the tensile strength of bedrock to be exceeded as the result of the stretching of rock layers under conditions of elevated pore fluid pressure and directed tectonic stress. Tectonic joints often reflect local tectonic stresses associated with local folding and faulting. Tectonic joints occur as both nonsystematic and systematic joints, including orthogonal and conjugate joint sets. [2] [4] [8]

Hydraulic

Hydraulic joints are formed when pore fluid pressure becomes elevated as a result of vertical gravitational loading. In simple terms, the accumulation of either sediments, volcanic, or other material causes an increase in the pore pressure of groundwater and other fluids in the underlying rock when they cannot move either laterally or vertically in response to this pressure. This also causes an increase in pore pressure in preexisting cracks that increases the tensile stress on them perpendicular to the minimum principal stress (the direction in which the rock is being stretched). If the tensile stress exceeds the magnitude of the least principal compressive stress the rock will fail in a brittle manner and these cracks propagate in a process called hydraulic fracturing. Hydraulic joints occur as both nonsystematic and systematic joints, including orthogonal and conjugate joint sets. In some cases, joint sets can be a tectonic - hydraulic hybrid. [2] [4] [8]

Exfoliation

Exfoliation joints are sets of flat-lying, curved, and large joints that are restricted to massively exposed rock faces in a deeply eroded landscape. Exfoliation jointing consists of fan-shaped fractures varying from a few meters to tens of meters in size that lie sub-parallel to the topography. The vertical, gravitational load of the mass of a mountain-size bedrock mass drives longitudinal splitting and causes outward buckling toward the free air. In addition, paleostress sealed in the granite before the granite was exhumed by erosion and released by exhumation and canyon cutting is also a driving force for the actual spalling. [2] [9]

Unloading

Unloading joints or release joints arise near the surface when bedded sedimentary rocks are brought closer to the surface during uplift and erosion; when they cool, they contract and become relaxed elastically. A stress builds up which eventually exceeds the tensile strength of the bedrock and results in jointing. In the case of unloading joints, compressive stress is released either along preexisting structural elements (such as cleavage) or perpendicular to the former direction of tectonic compression. [2] [4] [8]

Cooling

Cooling joints are columnar joints that result from the cooling of either lava from the exposed surface of a lava lake or flood basalt flow or the sides of a tabular igneous, typically basaltic, intrusion. They exhibit a pattern of joints that join together at triple junctions either at or about 120° angles. They split a rock body into long, prisms or columns that are typically hexagonal, although 3-, 4-, 5- and 7-sided columns are relatively common. They form as a result of a cooling front that moves from some surface, either the exposed surface of a lava lake or flood basalt flow or the sides of a tabular igneous intrusion into either lava of the lake or lava flow or magma of a dike or sill. [10] [11]

Fractography

Plumose structure on a fracture surface in sandstone, Arizona Plumose fracture.jpg
Plumose structure on a fracture surface in sandstone, Arizona

Joint propagation can be studied through the techniques of fractography in which characteristic marks such as hackles and plumose structures are used to determine propagation directions and, in some cases, the principal stress orientations. [12] [13]

Shear fractures

Some fractures that look like joints are actually shear fractures, which in effect are microfaults. They do not form as the result of the perpendicular opening of a fracture due to tensile stress, but through the shearing of fractures that causes lateral movement of the faces. Shear fractures can be confused with joints because the lateral offset of the fracture faces is not visible in the outcrop or in a specimen. Because of the absence of diagnostic ornamentation or the lack of any discernible movement or offset, they can be indistinguishable from joints. Such fractures occur in planar parallel sets at an angle of 60 degrees and can be of the same size and scale as joints. As a result, some "conjugate joint sets" might actually be shear fractures. Shear fractures are distinguished from joints by the presence of slickensides, the products of shearing movement parallel to the fracture surface. The slickensides are fine-scale, delicate ridge-in-groove lineations on the surface of fracture surfaces. [2]

Importance

Joints are important not only in understanding the local and regional geology and geomorphology but also in developing natural resources, in the safe design of structures, and in environmental protection. Joints have a profound control on weathering and erosion of bedrock. As a result, they exert a strong control on how topography and morphology of landscapes develop. Understanding the local and regional distribution, physical character, and origin of joints is a significant part of understanding the geology and geomorphology of an area. Joints often impart a well-develop fracture-induced permeability to bedrock. As a result, joints strongly influence, even control, the natural circulation (hydrogeology) of fluids, e.g. groundwater and pollutants within aquifers, petroleum in reservoirs, and hydrothermal circulation at depth, within bedrock. [14] Thus, joints are important to the economic and safe development of petroleum, hydrothermal, and groundwater resources and the subject of intensive research relative to these resources. Regional and local joint systems exert a strong control on how ore-forming hydrothermal fluids (consisting largely of H2O , CO2, and NaCl — which formed most of Earth's ore deposits) circulated within its crust. As a result, understanding their genesis, structure, chronology, and distribution is an important part of finding and profitably developing ore deposits. Finally, joints often form discontinuities that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel, foundation, or slope construction. As a result, joints are an important part of geotechnical engineering in practice and research. [2] [4] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Structural geology</span> Science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

<span class="mw-page-title-main">Fault (geology)</span> Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

<span class="mw-page-title-main">Crystallite</span> Small crystal which forms under certain conditions

A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains.

<span class="mw-page-title-main">Fold (geology)</span> Stack of originally planar surfaces

In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved ("folded") during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets. Synsedimentary folds are those formed during sedimentary deposition.

<span class="mw-page-title-main">Dike (geology)</span> A sheet of rock that is formed in a fracture of a pre-existing rock body

In geology, a dike or dyke is a sheet of rock that is formed in a fracture of a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion, either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack.

<span class="mw-page-title-main">Vein (geology)</span> Sheetlike body of crystallized minerals within a rock

In geology, a vein is a distinct sheetlike body of crystallized minerals within a rock. Veins form when mineral constituents carried by an aqueous solution within the rock mass are deposited through precipitation. The hydraulic flow involved is usually due to hydrothermal circulation.

<span class="mw-page-title-main">Shear (geology)</span> Response of rock to deformation

In geology, shear is the response of a rock to deformation usually by compressive stress and forms particular textures. Shear can be homogeneous or non-homogeneous, and may be pure shear or simple shear. Study of geological shear is related to the study of structural geology, rock microstructure or rock texture and fault mechanics.

<span class="mw-page-title-main">Foliation (geology)</span> Repetitive layering in metamorphic rocks

Foliation in geology refers to repetitive layering in metamorphic rocks. Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces, or differential pressure. The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated metamorphic rocks are typically formed in the absence of significant differential pressure or shear. Foliation is common in rocks affected by the regional metamorphic compression typical of areas of mountain belt formation.

<span class="mw-page-title-main">Exfoliation joint</span> Type of weathering joint

Exfoliation joints or sheet joints are surface-parallel fracture systems in rock, often leading to the erosion of concentric slabs.

Lineations in structural geology are linear structural features within rocks. There are several types of lineations, intersection lineations, crenulation lineations, mineral lineations and stretching lineations being the most common. Lineation field measurements are recorded as map lines with a plunge angle and azimuth.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Stylolite</span> Serrated surface within a rock mass

Stylolites are serrated surfaces within a rock mass at which mineral material has been removed by pressure dissolution, in a deformation process that decreases the total volume of rock. Minerals which are insoluble in water, such as clays, pyrite and oxides, as well as insoluble organic matter, remain within the stylolites and make them visible. Sometimes host rocks contain no insoluble minerals, in which case stylolites can be recognized by change in texture of the rock. They occur most commonly in homogeneous rocks, carbonates, cherts, sandstones, but they can be found in certain igneous rocks and ice. Their size vary from microscopic contacts between two grains (microstylolites) to large structures up to 20 m in length and up to 10 m in amplitude in ice. Stylolites usually form parallel to bedding, because of overburden pressure, but they can be oblique or even perpendicular to bedding, as a result of tectonic activity.

<span class="mw-page-title-main">Tessellated pavement</span> Relatively flat rock surface that is subdivided into more or less regular shapes by fractures

In geology and geomorphology, a tessellated pavement is a relatively flat rock surface that is subdivided into polygons by fractures, frequently systematic joints, within the rock. This type of rock pavement bears this name because it is fractured into polygonal blocks that resemble tiles of a mosaic floor, or tessellations.

<span class="mw-page-title-main">Cleavage (geology)</span> Planar fabric in rock

Cleavage, in structural geology and petrology, describes a type of planar rock feature that develops as a result of deformation and metamorphism. The degree of deformation and metamorphism along with rock type determines the kind of cleavage feature that develops. Generally, these structures are formed in fine grained rocks composed of minerals affected by pressure solution.

<span class="mw-page-title-main">Tension (geology)</span>

In geology, the term "tension" refers to a stress which stretches rocks in two opposite directions. The rocks become longer in a lateral direction and thinner in a vertical direction. One important result of tensile stress is jointing in rocks. However, tensile stress is rare because most subsurface stress is compressive, due to the weight of the overburden.

In structural geology, strain partitioning is the distribution of the total strain experienced on a rock, area, or region, in terms of different strain intensity and strain type. This process is observed on a range of scales spanning from the grain – crystal scale to the plate – lithospheric scale, and occurs in both the brittle and plastic deformation regimes. The manner and intensity by which strain is distributed are controlled by a number of factors listed below.

Paleostress inversion refers to the determination of paleostress history from evidence found in rocks, based on the principle that past tectonic stress should have left traces in the rocks. Such relationships have been discovered from field studies for years: qualitative and quantitative analyses of deformation structures are useful for understanding the distribution and transformation of paleostress fields controlled by sequential tectonic events. Deformation ranges from microscopic to regional scale, and from brittle to ductile behaviour, depending on the rheology of the rock, orientation and magnitude of the stress, etc. Therefore, detailed observations in outcrops, as well as in thin sections, are important in reconstructing the paleostress trajectories.

<span class="mw-page-title-main">Bouligand structure</span>

A Bouligand structure is a layered and rotated microstructure resembling plywood, which is frequently found in naturally evolved materials. It consists of multiple lamellae, or layers, each one composed of aligned fibers. Adjacent lamellae are progressively rotated with respect to their neighbors. This structure enhances the mechanical properties of materials, especially its fracture resistance, and enables strength and in plane isotropy. It is found in various natural structures, including the cosmoid scale of the coelacanth, and the dactyl club of the mantis shrimp and many other stomatopods.

<span class="mw-page-title-main">Catoctin Formation</span>

The Catoctin Formation is a geologic formation that expands through Virginia, Maryland, and Pennsylvania. It dates back to the Precambrian and is closely associated with the Harpers Formation, Weverton Formation, and the Loudoun Formation. The Catoctin Formation lies over the a granite basement rock and below the Chilhowee Group making it only exposed on the outer parts of the Blue Ridge. The Catoctin Formation contains metabasalt, metarhyolite, and porphyritic rocks, columnar jointing, low-dipping primary joints, amygdules, sedimentary dikes, and flow breccias. Evidence for past volcanic activity includes columnar basalts and greenstone dikes.

Anderson's theory of faulting, devised by Ernest Masson Anderson in 1905, is a way of classifying geological faults by use of principal stress. A fault is a fracture in the surface of the Earth that occurs when rocks break under extreme stress. Movement of rock along the fracture occurs in faults. If no movement occurs, the fracture is described instead as a joint. The grinding of two rock masses against each another along a fault results in an earthquake and deformation of the Earth's crust. Faults can be classified into four types based on the kind of motion between the separated rock masses: normal, reverse, strike-slip, and oblique.

References

  1. 1 2 3 4 5 6 Mandl, G. (2005) Rock Joints: The Mechanical Genesis. Springer-Verlag, Heidelberg, Germany. 221 pp. ISBN   978-3-540-24553-7
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Davis, G.H., S.J. Reynolds, and C. Kluth (2012) Structural Geology of Rocks and Regions (3rd ed.): John Wiley and Sons, Inc., New york, New York. 864 pp. ISBN   978-0471152316
  3. 1 2 Goudie, A.S. (2004) Encyclopedia of Geomorphology volume 2 J–Z. Routledge New York, New York. 578 pp. ISBN   9780415327381
  4. 1 2 3 4 5 6 7 8 9 10 van der Pluijm, B.A. , and S. Marshak (2004) Earth structure : an introduction to structural geology and tectonics, 2nd ed. W. W. Norton & Company, Inc., New York, New York. 672 pp. 10110 ISBN   978-0393924671
  5. McPhie, J., M. Doyle, and R. Allen (1993) Volcanic Textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania, Hobart, Tasmania. 196 pp. ISBN   9780859015226
  6. Neuendorf, K.K.E., J.P. Mehl Jr., and J.A. Jackson, eds. (2005) Glossary of Geology (5th ed.). Alexandria, Virginia, American Geological Institute. 779 pp. ISBN   0-922152-76-4
  7. Young, G.M. (2008) Origin of Enigmatic Structures: Field and Geochemical Investigation of Columnar Joints in Sandstones, Island of Bute, Scotland. Journal of Geology. 116(5):527-536.
  8. 1 2 3 Davis, G.H., and S.J. Reynolds (1996) Structural Geology of Rocks and Regions (2nd ed.). New York, John Wiley and Sons, Inc., 776 p. ISBN   978-0471152316
  9. Twidale, C.R., and E.M. Campbell (2005) Australian Landforms: Understanding a Low, Flat, Arid and Old Landscape. Rosenberg Publishing Pty. Ltd. Revised edition, 2005. P. 140. ISBN   1 877058 32 7
  10. Goehring, L., and S.W. Morris (2008) Scaling of columnar joints in basalt. Journal of Geophysical Research. B113:B10203, 18 pp.
  11. Goehring, L. (2013) Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 371(20120353). 18 pp.
  12. Roberts, J.C. (1995) Fracture surface markings in Liassic limestone at Lavernock Point, South Wales. Geological Society, London, Special Publications; v. 92; p. 175-186]
  13. 1 2 Bahat, D., A. Rabinovitch, and V. Frid (2005) Tensile Fracturing in Rocks: Tectonofractographic and Electromagnetic Radiation Methods. Springer-Verlag Berlin. 569 pp. ISBN   3-540-21456-9
  14. Guerriero V, et al. (2012). "A permeability model for naturally fractured carbonate reservoirs". Marine and Petroleum Geology . 40: 115–134. doi:10.1016/j.marpetgeo.2012.11.002.