Matrix Gla protein

Last updated
MGP
Identifiers
Aliases MGP , MGLAP, NTI, GIG36, matrix Gla protein
External IDs OMIM: 154870 MGI: 96976 HomoloGene: 693 GeneCards: MGP
Gene location (Human)
Ideogram human chromosome 12.svg
Chr. Chromosome 12 (human) [1]
Human chromosome 12 ideogram.svg
HSR 1996 II 3.5e.svg
Red rectangle 2x18.png
Band 12p12.3Start14,880,864 bp [1]
End14,885,857 bp [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001190839
NM_000900

NM_008597

RefSeq (protein)

NP_000891
NP_001177768

NP_032623

Location (UCSC) Chr 12: 14.88 – 14.89 Mb Chr 6: 136.87 – 136.88 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Matrix Gla protein (MGP) is member of a family of vitamin-K2 dependent, Gla-containing proteins. MGP has a high affinity binding to calcium ions, similar to other Gla-containing proteins. The protein acts as an inhibitor of vascular mineralization and plays a role in bone organization. [5] [6]

Contents

MGP is found in a number of body tissues in mammals, birds, and fish. Its mRNA is present in bone, cartilage, heart, and kidney. [7]

It is present in bone together with the related vitamin K2-dependent protein osteocalcin. In bone, its production is increased by vitamin D.

Genetics

The MGP was linked to the short arm of chromosome 12 in 1990. [8] Its mRNA sequence length is 585 bases long in humans. [9]

Physiology

MGP and osteocalcin are both calcium-binding proteins that may participate in the organisation of bone tissue. Both have glutamate residues that are post-translationally carboxylated by the enzyme gamma-glutamyl carboxylase in a reaction that requires Vitamin K hydroquinone.

Role in disease

Abnormalities in the MGP gene have been linked with Keutel syndrome, a rare condition characterised by abnormal calcium deposition in cartilage, peripheral stenosis of the pulmonary artery, and midfacial hypoplasia. [10]

Mice that lack MGP develop to term but die within two months as a result of arterial calcification which leads to blood-vessel rupture. [6]

Related Research Articles

Vitamin K vitamin

Vitamin K refers to structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor. The presence of uncarboxylated proteins indicates a vitamin K deficiency. Carboxylation allows them to bind (chelate) calcium ions, which they cannot do otherwise. Without vitamin K, blood coagulation is seriously impaired, and uncontrolled bleeding occurs. Research suggests that deficiency of vitamin K may also weaken bones, potentially contributing to osteoporosis, and may promote calcification of arteries and other soft tissues.

Osteoblast bone-forming cells which secrete an extracellular matrix

Osteoblasts are cells with a single nucleus that synthesize bone. However, in the process of bone formation, osteoblasts function in groups of connected cells. Individual cells cannot make bone. A group of organized osteoblasts together with the bone made by a unit of cells is usually called the osteon.

Calcification accumulation of calcium salts in a body tissue

Calcification is the accumulation of calcium salts in a body tissue. It normally occurs in the formation of bone, but calcium can be deposited abnormally in soft tissue, causing it to harden. Calcifications may be classified on whether there is mineral balance or not, and the location of the calcification. Calcification may also refer to the processes of normal mineral deposition in biological systems, such as the formation of stromatolites or mollusc shells.

Osteopontin mammalian protein found in Homo sapiens

Osteopontin (OPN), also known as bone sialoprotein I, early T-lymphocyte activation (ETA-1), secreted phosphoprotein 1 (SPP1), 2ar and Rickettsia resistance (Ric), is a protein that in humans is encoded by the SPP1 gene. The murine ortholog is Spp1. Osteopontin is a SIBLING (glycoprotein) that was first identified in 1986 in osteoblasts.

TRPV6 protein-coding gene in the species Homo sapiens

TRPV6 is a membrane calcium (Ca2+) channel protein which is particularly involved in the first step in Ca2+absorption in the intestine.

Osteocalcin mammalian protein found in Homo sapiens

Osteocalcin, also known as bone gamma-carboxyglutamic acid-containing protein (BGLAP), is a small (49-amino-acid) noncollagenous protein hormone found in bone and dentin, first identified as a calcium-binding protein in chick bone.

Biglycan protein-coding gene in the species Homo sapiens

Biglycan is a small leucine-rich repeat proteoglycan (SLRP) which is found in a variety of extracellular matrix tissues, including bone, cartilage and tendon. In humans, biglycan is encoded by the BGN gene which is located on the X chromosome.

Osteonectin mammalian protein found in Homo sapiens

Osteonectin (ON) also known as secreted protein acidic and rich in cysteine (SPARC) or basement-membrane protein 40 (BM-40) is a protein that in humans is encoded by the SPARC gene.

Monckebergs arteriosclerosis Humans arterial pathology

Mönckeberg's arteriosclerosis, or Mönckeberg's sclerosis, is a form of arteriosclerosis or vessel hardening, where calcium deposits are found in the muscular middle layer of the walls of arteries. It is an example of dystrophic calcification. This condition occurs as an age-related degenerative process. However, it can occur in pseudoxanthoma elasticum and idiopathic arterial calcification of infancy as a pathological condition, as well. Its clinical significance and cause are not well understood and its relationship to atherosclerosis and other forms of vascular calcification are the subject of disagreement. Mönckeberg's arteriosclerosis is named after Johann Georg Mönckeberg, who first described it in 1903.

Cartilage oligomeric matrix protein protein-coding gene in the species Homo sapiens

Cartilage oligomeric matrix protein (COMP), also known as thrombospondin-5, is an extracellular matrix (ECM) protein primarily present in cartilage. In humans it is encoded by the COMP gene.

Gla domain InterPro Domain

Vitamin K-dependent carboxylation/gamma-carboxyglutamic (GLA) domain is a protein domain that contains post-translational modifications of many glutamate residues by vitamin K-dependent carboxylation to form γ-carboxyglutamate (Gla). Proteins with this domain are known informally as Gla proteins. The Gla residues are responsible for the high-affinity binding of calcium ions.

alpha-2-HS-glycoprotein protein-coding gene in the species Homo sapiens

alpha-2-HS-glycoprotein also known as fetuin-A is a protein that in humans is encoded by the AHSG gene. Fetuin-A belongs to the fetuin class of plasma binding proteins and is more abundant in fetal than adult blood.

Fibromodulin protein-coding gene in the species Homo sapiens

Fibromodulin is a protein that in humans is encoded by the FMOD gene.

S100G protein-coding gene in the species Homo sapiens

S100 calcium-binding protein G (S100G) is a protein that in humans is encoded by the S100G gene.

LECT1 protein-coding gene in the species Homo sapiens

Chondromodulin-1 is a protein that in humans is encoded by the LECT1 gene.

Sp7 transcription factor protein-coding gene in the species Homo sapiens

Transcription factor Sp7, also called Osterix (Osx), is a protein that in humans is encoded by the SP7 gene. It is a member of the Sp family of zinc-finger transcription factors It is highly conserved among bone-forming verterbrate species It plays a major role, along with Runx2 and Dlx5 in driving the differentiation of mesenchymal precursor cells into osteoblasts and eventually osteocytes. Sp7 also plays a regulatory role by inhibiting chondrocyte differentiation maintaining the balance between differentiation of mesenchymal precursor cells into ossified bone or cartilage. Mutations of this gene have been associated with multiple dysfunctional bone phenotypes in vertebrates. During development, a mouse embryo model with Sp7 expression knocked out had no formation of bone tissue. Through the use of GWAS studies, the Sp7 locus in humans has been strongly associated with bone mass density. In addition there is significant genetic evidence for its role in diseases such as Osteogenesis imperfecta (OI).

Keutel syndrome Keutel syndrome is characterised by diffuse cartilage calcification, brachytelephalangism, peripheral pulmonary artery stenoses and facial dysmorphism

Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.

Vitamin K deficiency results from insufficient dietary vitamin K1 or vitamin K2 or both.

X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.

Vitamin K2 or menaquinone is one of three types of vitamin K, the other two being vitamin K1 (phylloquinone) and K3 (menadione). K2 is both a tissue and bacterial product (derived from vitamin K1 in both cases) and is usually found in animal products or fermented foods.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000111341 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030218 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Boström KI (2013). "A role for the endothelium in vascular calcification". Circ. Res. 113 (5): 495–504. doi:10.1161/CIRCRESAHA.113.301792. PMC   3851028 . PMID   23852538.
  6. 1 2 Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (March 1997). "Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein". Nature. 386 (6620): 78–81. Bibcode:1997Natur.386...78L. doi:10.1038/386078a0. PMID   9052783. S2CID   4335985.
  7. Pinto JP, Conceição N, Gavaia PJ, Cancela ML (2003). "Matrix Gla protein gene expression and protein accumulation colocalize with cartilage distribution during development of the teleost fish Sparus aurata". Bone. 32 (3): 201–10. doi:10.1016/S8756-3282(02)00981-X. PMID   12667547.
  8. Cancela L, Hsieh CL, Francke U, Price PA (1990). "Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene". J. Biol. Chem. 265 (25): 15040–8. PMID   2394711.
  9. "Sequence: M58549.1 : Human matrix Gla protein (MGP) mRNA, complete cds". European Nucleotide Archive. European Bioinformatics Institute.
  10. Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F, Yuksel B, Gardiner RM, Chung E (1999). "Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome". Nat. Genet. 21 (1): 142–4. doi:10.1038/5102. PMID   9916809. S2CID   1244954.