Newton's law of cooling

Last updated

In the study of heat transfer, Newton's law of cooling is a physical law which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant.

Contents

In heat conduction, Newton's Law is generally followed as a consequence of Fourier's law. The thermal conductivity of most materials is only weakly dependent on temperature, so the constant heat transfer coefficient condition is generally met. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. In the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.

When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling.

Historical background

Isaac Newton published his work on cooling anonymously in 1701 as "Scala graduum Caloris" in Philosophical Transactions . [1] [2]

Newton did not originally state his law in the above form in 1701. Rather, using today's terms, Newton noted after some mathematical manipulation that the rate of temperature change of a body is proportional to the difference in temperatures between the body and its surroundings. This final simplest version of the law, given by Newton himself, was partly due to confusion in Newton's time between the concepts of heat and temperature, which would not be fully disentangled until much later. [3]

In 2020, Maruyama and Moriya repeated Newton's experiments with modern apparatus, and they applied modern data reduction techniques. [4] In particular, these investigators took account of thermal radiation at high temperatures (as for the molten metals Newton used), and they accounted for buoyancy effects on the air flow. By comparison to Newton's original data, they concluded that his measurements (from 1692 to 1693) had been "quite accurate". [4]

Relationship to mechanism of cooling

Convection cooling is sometimes said to be governed by "Newton's law of cooling." When the heat transfer coefficient is independent, or relatively independent, of the temperature difference between object and environment, Newton's law is followed. The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer. In that case, Newton's law only approximates the result when the temperature difference is relatively small. Newton himself realized this limitation.

A correction to Newton's law concerning convection for larger temperature differentials by including an exponent, was made in 1817 by Dulong and Petit. [5] (These men are better-known for their formulation of the Dulong–Petit law concerning the molar specific heat capacity of a crystal.)

Another situation that does not obey Newton's law is radiative heat transfer. Radiative cooling is better described by the Stefan–Boltzmann law in which the heat transfer rate varies as the difference in the 4th powers of the absolute temperatures of the object and of its environment.

Mathematical formulation of Newton's law

The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:

where

In global parameters by integrating on the surface area the heat flux, it can be also stated as:

where

If the heat transfer coefficient and the temperature difference are uniform along the heat transfer surface, the above formula simplifies to:

.

The heat transfer coefficient h depends upon physical properties of the fluid and the physical situation in which convection occurs. Therefore, a single usable heat transfer coefficient (one that does not vary significantly across the temperature-difference ranges covered during cooling and heating) must be derived or found experimentally for every system that is to be analyzed.

Formulas and correlations are available in many references to calculate heat transfer coefficients for typical configurations and fluids. For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [6] Note the heat transfer coefficient changes in a system when a transition from laminar to turbulent flow occurs.

The Biot number

The Biot number, a dimensionless quantity, is defined for a body as

where

The physical significance of Biot number can be understood by imagining the heat flow from a hot metal sphere suddenly immersed in a pool to the surrounding fluid. The heat flow experiences two resistances: the first outside the surface of the sphere, and the second within the solid metal (which is influenced by both the size and composition of the sphere). The ratio of these resistances is the dimensionless Biot number.

If the thermal resistance at the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed always to have the same temperature, although this temperature may be changing, as heat passes into the sphere from the surface. The equation to describe this change in (relatively uniform) temperature inside the object, is the simple exponential one described in Newton's law of cooling expressed in terms of temperature difference (see below).

In contrast, the metal sphere may be large, causing the characteristic length to increase to the point that the Biot number is larger than one. In this case, temperature gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a thermally insulating (poorly conductive) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that at the fluid/sphere boundary, even with a much smaller sphere. In this case, again, the Biot number will be greater than one.

Values of the Biot number smaller than 0.1 imply that the heat conduction inside the body is much faster than the heat convection away from its surface, and temperature gradients are negligible inside of it. This can indicate the applicability (or inapplicability) of certain methods of solving transient heat transfer problems. For example, a Biot number less than 0.1 typically indicates less than 5% error will be present when assuming a lumped-capacitance model of transient heat transfer (also called lumped system analysis). [7] Typically, this type of analysis leads to simple exponential heating or cooling behavior ("Newtonian" cooling or heating) since the internal energy of the body is directly proportional to its temperature, which in turn determines the rate of heat transfer into or out of it. This leads to a simple first-order differential equation which describes heat transfer in these systems.

Having a Biot number smaller than 0.1 labels a substance as "thermally thin," and temperature can be assumed to be constant throughout the material's volume. The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the time-varying and non-spatially-uniform temperature field within the material body. Analytic methods for handling these problems, which may exist for simple geometric shapes and uniform material thermal conductivity, are described in the article on the heat equation.

Application of Newton's law of transient cooling

Simple solutions for transient cooling of an object may be obtained when the internal thermal resistance within the object is small in comparison to the resistance to heat transfer away from the object's surface (by external conduction or convection), which is the condition for which the Biot number is less than about 0.1. This condition allows the presumption of a single, approximately uniform temperature inside the body, which varies in time but not with position. (Otherwise the body would have many different temperatures inside it at any one time.) This single temperature will generally change exponentially as time progresses (see below).

The condition of low Biot number leads to the so-called lumped capacitance model. In this model, the internal energy (the amount of thermal energy in the body) is calculated by assuming a constant heat capacity. In that case, the internal energy of the body is a linear function of the body's single internal temperature.

The lumped capacitance solution that follows assumes a constant heat transfer coefficient, as would be the case in forced convection. For free convection, the lumped capacitance model can be solved with a heat transfer coefficient that varies with temperature difference. [8]

First-order transient response of lumped-capacitance objects

A body treated as a lumped capacitance object, with a total internal energy of (in joules), is characterized by a single uniform internal temperature, . The heat capacitance, , of the body is (in J/K), for the case of an incompressible material. The internal energy may be written in terms of the temperature of the body, the heat capacitance (taken to be independent of temperature), and a reference temperature at which the internal energy is zero: .

Differentiating with respect to time gives:

Applying the first law of thermodynamics to the lumped object gives , where the rate of heat transfer out of the body, , may be expressed by Newton's law of cooling, and where no work transfer occurs for an incompressible material. Thus, where the time constant of the system is . The heat capacitance may be written in terms of the object's specific heat capacity, (J/kg-K), and mass, (kg). The time constant is then .

When the environmental temperature is constant in time, we may define . The equation becomes

The solution of this differential equation, by integration from the initial condition, is where is the temperature difference at time 0. Reverting to temperature, the solution is

The temperature difference between the body and the environment decays exponentially as a function of time.

Standard Formulation

By defining , the differential equation becomes

where

Solving the initial-value problem using separation of variables gives

See also

Related Research Articles

In thermal fluid dynamics, the Nusselt number is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout. Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. Heat spontaneously flows along a temperature gradient. For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it. In the absence of an opposing external driving energy source, within a body or between bodies, temperature differences decay over time, and thermal equilibrium is approached, temperature becoming more uniform.

<span class="mw-page-title-main">Biot number</span> Ratio of the thermal resistances of a bodys interior to its surface

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the temperature inside a body varies significantly in space when the body is heated or cooled over time by a heat flux at its surface.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<i>R</i>-value (insulation) Measure of how well an object, per unit of area, resists conductive flow of heat

The R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat, in the context of construction. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Lumped-element model</span> Simplification of a physical system into a network of discrete components

The lumped-element model is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems, mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.

<span class="mw-page-title-main">Heat sink</span> Passive heat exchanger that transfers heat

A heat sink is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks are used to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with other high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin.

The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts. Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy. Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’.

<span class="mw-page-title-main">Fin (extended surface)</span> Surface that extends from an object to increase heat transfer

In the study of heat transfer, fins are surfaces that extend from an object to increase the rate of heat transfer to or from the environment by increasing convection. The amount of conduction, convection, or radiation of an object determines the amount of heat it transfers. Increasing the temperature gradient between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Sometimes it is not feasible or economical to change the first two options. Thus, adding a fin to an object, increases the surface area and can sometimes be an economical solution to heat transfer problems.

<span class="mw-page-title-main">Convection (heat transfer)</span> Heat transfer due to combined effects of advection and diffusion

Convection is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction and advection. Convection is usually the dominant form of heat transfer in liquids and gases.

In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.

In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent thermal shock, and maximize the efficiency of thermal systems. Furthermore, these principles find applications in a multitude of fields, including materials science, mechanical engineering, electronics, and energy management. Knowledge of these principles is crucial in various scientific, engineering, and everyday applications, from designing efficient temperature control, thermal insulation, and thermal management in industrial processes to optimizing the performance of electronic devices.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

CFD stands for computational fluid dynamics. As per this technique, the governing differential equations of a flow system or thermal system are known in the form of Navier–Stokes equations, thermal energy equation and species equation with an appropriate equation of state. In the past few years, CFD has been playing an increasingly important role in building design, following its continuing development for over a quarter of a century. The information provided by CFD can be used to analyse the impact of building exhausts to the environment, to predict smoke and fire risks in buildings, to quantify indoor environment quality, and to design natural ventilation systems.

Heat transfer enhancement is the process of increasing the effectiveness of heat exchangers. This can be achieved when the heat transfer power of a given device is increased or when the pressure losses generated by the device are reduced. A variety of techniques can be applied to this effect, including generating strong secondary flows or increasing boundary layer turbulence.

The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions. In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction of the reactor. The effectiveness of removal of heat from the reactor core depends on many factors, including the cooling agents used and the type of reactor. Common liquid coolants for nuclear reactors include: deionized water, heavy water, the lighter alkaline metals, lead or lead-based eutectic alloys like lead-bismuth, and NaK, a eutectic alloy of sodium and potassium. Gas cooled reactors operate with coolants like carbon dioxide, helium or nitrogen but some very low powered research reactors have even been air-cooled with Chicago Pile 1 relying on natural convection of the surrounding air to remove the negligible thermal power output. There is ongoing research into using supercritical fluids as reactor coolants but thus far neither the supercritical water reactor nor a reactor cooled with supercritical Carbon Dioxide nor any other kind of supercritical-fluid-cooled reactor has ever been built.

References

  1. "VII. Scala graduum caloris". Philosophical Transactions of the Royal Society of London. 22 (270): 824–829. 1701. doi: 10.1098/rstl.1700.0082 .
  2. "VII. Scala graduum Caloris". Philosophical Transactions of the Royal Society of London. 22 (270): 824–829. 1701. doi: 10.1098/rstl.1700.0082 . JSTOR   102813.
  3. History of Newton's cooling law Archived 2015-06-14 at the Wayback Machine
  4. 1 2 Maruyama, Shigenao; Moriya, Shuichi (2021). "Newton's Law of Cooling: Follow up and exploration". International Journal of Heat and Mass Transfer. 164: 120544. doi:10.1016/j.ijheatmasstransfer.2020.120544.
  5. Whewell, William (1866). History of the Inductive Sciences from the Earliest to the Present Times. ISBN   978-0-598-73959-9.
  6. Lienhard, John H. IV; Lienhard, John H., V (2019). "Laminar and turbulent boundary layers". A Heat Transfer Textbook (5th ed.). Mineola, NY: Dover Publications. pp. 271–347. ISBN   978-0-486-83735-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. Frank Incropera; Theodore L. Bergman; David DeWitt; Adrienne S. Lavine (2007). Fundamentals of Heat and Mass Transfer (6th ed.). John Wiley & Sons. pp.  260–261. ISBN   978-0-471-45728-2.
  8. Lienhard, John H. IV; Lienhard, John H., V (2019). A Heat Transfer Textbook (5th ed.). Mineola, NY: Dover Publications. pp. 419–420. ISBN   978-0-486-83735-2.{{cite book}}: CS1 maint: multiple names: authors list (link)

See also: