SPRED1

Last updated
SPRED1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SPRED1 , NFLS, PPP1R147, hSpred1, spred-1, sprouty related EVH1 domain containing 1, LGSS
External IDs OMIM: 609291 MGI: 2150016 HomoloGene: 24919 GeneCards: SPRED1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_152594

NM_001277256
NM_033524

RefSeq (protein)

NP_689807

NP_001264185
NP_277059

Location (UCSC) Chr 15: 38.25 – 38.36 Mb Chr 2: 116.95 – 117.01 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sprouty-related, EVH1 domain-containing protein 1 (Spread-1) is a protein that in humans is encoded by the SPRED1 gene located on chromosome 15q13.2 and has seven coding exons. [5]

Contents

Function

SPRED-1 is a member of the Sprouty family of proteins and is phosphorylated by tyrosine kinase in response to several growth factors. The encoded protein can act as a homodimer or as a heterodimer with SPRED2 to regulate activation of the MAP kinase cascade. [5]

Clinical associations

Defects in this gene are a cause of neurofibromatosis type 1-like syndrome (NFLS). [5]

Mutations in this gene are associated with

Mutations

The following mutations have been observed:

Disease Database

SPRED1 gene variant database

See also

Related Research Articles

<span class="mw-page-title-main">Neurofibromatosis</span> Medical condition

Neurofibromatosis (NF) is a group of three conditions in which tumors grow in the nervous system. The three types are neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis. In NF1 symptoms include light brown spots on the skin, freckles in the armpit and groin, small bumps within nerves, and scoliosis. In NF2, there may be hearing loss, cataracts at a young age, balance problems, flesh colored skin flaps, and muscle wasting. In schwannomatosis there may be pain either in one location or in wide areas of the body. The tumors in NF are generally non-cancerous.

<span class="mw-page-title-main">Neurofibromatosis type I</span> Type of neurofibromatosis disease

Neurofibromatosis type I (NF-1), or von Recklinghausen syndrome, is a complex multi-system human disorder caused by the mutation of Neurofibromin 1, a gene on chromosome 17 that is responsible for production of a protein (neurofibromin) which is needed for normal function in many human cell types. NF-1 causes tumors along the nervous system which can grow anywhere on the body. NF-1 is one of the most common genetic disorders and is not limited to any person's race or sex. NF-1 is an autosomal dominant disorder, which means that mutation or deletion of one copy of the NF-1 gene is sufficient for the development of NF-1, although presentation varies widely and is often different even between relatives affected by NF-1.

<span class="mw-page-title-main">Merlin (protein)</span> Mammalian protein found in Homo sapiens

Merlin is a cytoskeletal protein. In humans, it is a tumor suppressor protein involved in neurofibromatosis type II. Sequence data reveal its similarity to the ERM protein family.

c-Raf Mammalian protein found in Homo sapiens

RAF proto-oncogene serine/threonine-protein kinase, also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1, is an enzyme that in humans is encoded by the RAF1 gene. The c-Raf protein is part of the ERK1/2 pathway as a MAP kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases. C-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases, from the TKL (Tyrosine-kinase-like) group of kinases.

<span class="mw-page-title-main">Neurofibromin 1</span> Mammalian protein found in Homo sapiens

neurofibromatosis 1 (NF1) is a gene in humans that is located on chromosome 17. NF1 codes for neurofibromin, a GTPase-activating protein that negatively regulates RAS/MAPK pathway activity by accelerating the hydrolysis of Ras-bound GTP. NF1 has a high mutation rate and mutations in NF1 can alter cellular growth control, and neural development, resulting in neurofibromatosis type 1. Symptoms of NF1 include disfiguring cutaneous neurofibromas (CNF), café au lait pigment spots, plexiform neurofibromas (PN), skeletal defects, optic nerve gliomas, life-threatening malignant peripheral nerve sheath tumors (MPNST), pheochromocytoma, attention deficits, learning deficits and other cognitive disabilities.

<span class="mw-page-title-main">Aminomethyltransferase</span> Protein-coding gene in the species Homo sapiens

Aminomethyltransferase is an enzyme that catabolizes the creation of methylenetetrahydrofolate. It is part of the glycine decarboxylase complex.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

<span class="mw-page-title-main">ZEB2</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 2 is a protein that in humans is encoded by the ZEB2 gene. The ZEB2 protein is a transcription factor that plays a role in the transforming growth factor β (TGFβ) signaling pathways that are essential during early fetal development.

<span class="mw-page-title-main">SPRY2</span> Protein-coding gene in the species Homo sapiens

Sprouty homolog 2 (Drosophila), also known as SPRY2, is a protein which in humans is encoded by the SPRY2 gene.

<span class="mw-page-title-main">SPRED2</span> Protein-coding gene in the species Homo sapiens

Sprouty-related, EVH1 domain-containing protein 2 is a protein that in humans is encoded by the SPRED2 gene.

<span class="mw-page-title-main">AGK (gene)</span> Protein-coding gene in the species Homo sapiens

The human gene AGK encodes the enzyme mitochondrial acylglycerol kinase.

<span class="mw-page-title-main">SHANK3</span> Protein-coding gene in the species Homo sapiens

SH3 and multiple ankyrin repeat domains 3 (Shank3), also known as proline-rich synapse-associated protein 2 (ProSAP2), is a protein that in humans is encoded by the SHANK3 gene on chromosome 22. Additional isoforms have been described for this gene but they have not yet been experimentally verified.

<span class="mw-page-title-main">SPRY4</span> Protein-coding gene in the species Homo sapiens

Protein sprouty homolog 4 is a protein that in humans is encoded by the SPRY4 gene.

<span class="mw-page-title-main">Hydrolethalus syndrome</span> Medical condition

Hydrolethalus syndrome (HLS) is a rare genetic disorder that causes improper fetal development, resulting in birth defects and, most commonly, stillbirth.

Neuro-cardio-facial-cutaneous-syndromes (NCFC), is a group of developmental disorders with a genetic ground, affecting the nervous system, circulatory system, (cranio)facial and cutaneous development. These four parts are the common denominator for the syndromes, but are mostly accompanied by disturbances in other parts of the body.

<span class="mw-page-title-main">Legius syndrome</span> Medical condition

Legius syndrome (LS) is an autosomal dominant condition characterized by cafe au lait spots. It was first described in 2007 and is often mistaken for neurofibromatosis type I. It is caused by mutations in the SPRED1 gene. It is also known as neurofibromatosis type 1-like syndrome.

In molecular biology, the protein Sprouty is a developmental protein involved in cell signalling. It works by inhibiting the MAPK/ERK pathway.

<span class="mw-page-title-main">SPRED3</span> Protein-coding gene in the species Homo sapiens

Sprouty-related, EVH1 domain-containing protein 3 also known as Spread-3 is a protein that in humans is encoded by the SPRED3 gene.

In molecular biology the SPR domain is a protein domain found in the Sprouty (Spry) and Spred proteins. These have been identified as inhibitors of the Ras/mitogen-activated protein kinase (MAPK) cascade, a pathway crucial for developmental processes initiated by activation of various receptor tyrosine kinases. These proteins share a conserved, C-terminal cysteine-rich region, the SPR domain. This domain has been defined as a novel cytosol to membrane translocation domain. It has been found to be a PtdIns(4,5)P2-binding domain that targets the proteins to a cellular localization that maximizes their inhibitory potential. It also mediates homodimer formation of these proteins.

The RASopathies are developmental syndromes caused by germline mutations in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000166068 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027351 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: sprouty-related".
  6. Messiaen L, Yao S, Brems H, Callens T, Sathienkijkanchai A, Denayer E, Spencer E, Arn P, Babovic-Vuksanovic D, Bay C, Bobele G, Cohen BH, Escobar L, Eunpu D, Grebe T, Greenstein R, Hachen R, Irons M, Kronn D, Lemire E, Leppig K, Lim C, McDonald M, Narayanan V, Pearn A, Pedersen R, Powell B, Shapiro LR, Skidmore D, Tegay D, Thiese H, Zackai EH, Vijzelaar R, Taniguchi K, Ayada T, Okamoto F, Yoshimura A, Parret A, Korf B, Legius E (November 2009). "Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome". JAMA. 302 (19): 2111–8. doi:10.1001/jama.2009.1663. PMID   19920235.
  7. "Legius Syndrome (SPRED1) Sequencing & (NF1) Sequencing Exon 22 (Exon 17)" (PDF). ARUP Laboratories. 2010. Archived from the original (PDF) on 2012-05-30. Retrieved 2011-06-07.
  8. 1 2 Pasmant E, Ballerini P, Lapillonne H, Perot C, Vidaud D, Leverger G, Landman-Parker J (July 2009). "SPRED1 disorder and predisposition to leukemia in children". Blood. 114 (5): 1131. doi: 10.1182/blood-2009-04-218503 . PMID   19643996.
  9. 1 2 3 4 Spurlock G, Bennett E, Chuzhanova N, Thomas N, Jim HP, Side L, Davies S, Haan E, Kerr B, Huson SM, Upadhyaya M (July 2009). "SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype". Journal of Medical Genetics. 46 (7): 431–7. doi: 10.1136/jmg.2008.065474 . PMID   19443465.
  10. Muram-Zborovski TM, Stevenson DA, Viskochil DH, Dries DC, Wilson AR (October 2010). "SPRED 1 mutations in a neurofibromatosis clinic". Journal of Child Neurology. 25 (10): 1203–9. doi:10.1177/0883073809359540. PMC   3243064 . PMID   20179001.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.