Small nucleolar RNA SNORA2

Last updated
Small nucleolar RNA SNORA2/SNORA34 family
RF00410.jpg
Identifiers
SymbolSNORA2
Alt. SymbolssnoACA2
Rfam RF00410
Other data
RNA type Gene; snRNA; snoRNA; HACA-box
Domain(s) Eukaryota
GO GO:0006396 GO:0005730
SO SO:0000594
PDB structures PDBe

In molecular biology, SNORA2 (also known as ACA2) is a non-coding RNA (ncRNA) which modifies other small nuclear RNAs (snRNAs). It is a member of the H/ACA class of small nucleolar RNA that guide the sites of modification of uridines to pseudouridines. [1]

ACA2 was originally cloned from HeLa cells by association with GAR1 protein. It has the predicted hairpin-hinge-hairpin-tail structure and has the conserved H/ACA-box motifs. Originally two sequence variants of ACA2 were identified (called ACA2a and ACA2b). Both variants share approximately 66% sequence identity to another snoRNA characterised in the same study called ACA34 (also known as SNORA34). In the human genome all three snoRNAs (ACA2a, ACA2b and ACA34) are found to be located in the introns of the same gene. This gene encodes a predicted protein referred to as FLJ20436. [1]

Both variants of ACA2 have the same two predicted target sites (U4263 and U4282) in 28S ribosomal RNA (rRNA). ACA34 is also predicted to target one of these sites (U4282) in addition to U4269 of 28S rRNA. [1] [2] The sequence similarity, genomic location and the predicted target sites of these three snoRNAs suggest they have been generated by subsequent gene duplications during evolution. [1]

Related Research Articles

Small nucleolar RNA SNORA43 Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA43 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'.

Small nucleolar RNA SNORA44 Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA44 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'.

Small nucleolar RNA SNORA46 Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA46 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA46 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA46 is predicted to guide the pseudouridylation of U649 of 18S ribosomal RNA (rRNA). Pseudouridylation is the isomerisation of the nucleoside uridine to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA48

In molecular biology, Small nucleolar RNA SNORA48 is a pseudouridylation guide H/ACA box snoRNA. This snoRNA was cloned in 2004 from a HeLa cell extract immunoprecipitated with an anti-GAR1 antibody. It is predicted to guide the pseudouridylation of residue U3797 of 28S rRNA.

Small nucleolar RNA SNORA50 Non-coding RNA molecule which functions in the biogenesis of other small nuclear RNAs

In molecular biology, Small nucleolar RNA SNORA50 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA50 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA50 is predicted to guide the pseudouridylation of U34 and U105 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA51

In molecular biology, Small nucleolar RNA SNORA51 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA51 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein.

Small nucleolar RNA SNORA52

In molecular biology, Small nucleolar RNA SNORA52 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA52 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA52 is predicted to guide the pseudouridylation of U3823 of 28S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA54

In molecular biology, Small nucleolar RNA SNORA54 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA54 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA54 is predicted to guide the pseudouridylation of U3801 of 28S ribosomal RNA (rRNA). Pseudouridylation is the isomerisation to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA55

In molecular biology, Small nucleolar RNA SNORA55 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA55 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA55 is predicted to guide the pseudouridylation of U36 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA56

In molecular biology, Small nucleolar RNA SNORA56 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA56 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA56 is predicted to guide the pseudouridylation of U1664 of 28S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA58

In molecular biology, Small nucleolar RNA SNORA58 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

Small nucleolar RNA SNORA61

In molecular biology, Small nucleolar RNA SNORA61 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA61 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA61 is predicted to guide the pseudouridylation of U2495 of 28S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA66

In molecular biology, SNORA66 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA". U66 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. U66 is predicted to guide the pseudouridylation of U119 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.

Small nucleolar RNA SNORA68

In molecular biology, Small nucleolar RNA SNORA68 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

Small nucleolar RNA SNORA69

In molecular biology, Small nucleolar RNA SNORA69 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

Small nucleolar RNA SNORA72

In molecular biology, Small nucleolar RNA SNORA72 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

Small nucleolar RNA SNORA70

In molecular biology, Small nucleolar RNA SNORA70 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".

Small nucleolar RNA SNORA11

In molecular biology, Small nucleolar RNA SNORA11 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).

Small nucleolar RNA SNORA77

In molecular biology, Small nucleolar RNA SNORA77 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).

Small nucleolar RNA SNORA79

In molecular biology, Small nucleolar RNA SNORA79 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).

References

  1. 1 2 3 4 Kiss AM, Jády BE, Bertrand E, Kiss T (July 2004). "Human box H/ACA pseudouridylation guide RNA machinery". Molecular and Cellular Biology. 24 (13): 5797–807. doi:10.1128/MCB.24.13.5797-5807.2004. PMC   480876 . PMID   15199136.
  2. Lestrade L, Weber MJ (January 2006). "snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs". Nucleic Acids Research. 34 (Database issue): D158-62. CiteSeerX   10.1.1.105.7552 . doi:10.1093/nar/gkj002. PMC   1347365 . PMID   16381836.