Small nucleolar RNA SNORA63 | |
---|---|
Identifiers | |
Symbol | SNORA63 |
Alt. Symbols | E3 |
Rfam | RF00092 |
Other data | |
RNA type | Gene; snRNA; snoRNA; HACA-box |
Domain(s) | Eukaryota |
GO | GO:0006396 GO:0005730 |
SO | SO:0000594 |
PDB structures | PDBe |
In molecular biology, Small nucleolar RNA SNORA63 (E3) belongs to the H/ACA class of snoRNAs, is involved in the processing of eukaryotic pre-rRNA and has regions of complementarity to 18S rRNA. E3 is encoded in introns in the gene for protein synthesis initiation factor 4AII. [1]
In molecular biology, SNORA17 is a member of the H/ACA class of small nucleolar RNA that guide the sites of modification of uridines to pseudouridines. Specifically, it is predicted to guide pseudouridylation of the 28S rRNA at positions U4659 and U4598. It shares the same host gene together with ACA43.
In molecular biology, SNORA26 is a member of the H/ACA class of small nucleolar RNA that guide the sites of modification of uridines to pseudouridines.
In molecular biology, SNORA30 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of eukaryotic cells. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA' as it 'guides' the modification process.
In molecular biology, the small nucleolar RNA ACA40 belongs to the H/ACA family of snoRNAs and guides the pseudouridylation of 28S rRNA subunit at position U4565. snoRNA ACA40 was discovered using large-scale cloning by Kiss et al. (2004) from a HeLa cell extract immunoprecipitated with an anti-GAR1 antibody. It is predicted to guide the pseudouridylation of residues 28S rRNA U4546 and 18S rRNA 1174. The pseudouridylation of these residues was reported by Ofengand and Bakin (1997) and Maden (1990). ACA1, ACA8, ACA18, ACA25, ACA32 and ACA40 and the C/D box snoRNAs mgh28S-2409 and mgh28S-2411 share the same host gene (MGC5306).
In molecular biology, Small nucleolar RNA SNORA48 is a pseudouridylation guide H/ACA box snoRNA. This snoRNA was cloned in 2004 from a HeLa cell extract immunoprecipitated with an anti-GAR1 antibody. It is predicted to guide the pseudouridylation of residue U3797 of 28S rRNA.
In molecular biology, Small nucleolar RNA SNORA52 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA52 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA52 is predicted to guide the pseudouridylation of U3823 of 28S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.
In molecular biology, Small nucleolar RNA SNORA57 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".
In molecular biology, Small nucleolar RNA SNORA61 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. ACA61 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. snoRNA ACA61 is predicted to guide the pseudouridylation of U2495 of 28S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.
In molecular biology, Small nucleolar RNA SNORA62 (E2) belongs to the H/ACA class of snoRNAs.
In molecular biology, SNORA65 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'.
In molecular biology, SNORA66 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA". U66 was originally cloned from HeLa cells and belongs to the H/ACA box class of snoRNAs as it has the predicted hairpin-hinge-hairpin-tail structure, has the conserved H/ACA-box motifs and is found associated with GAR1 protein. U66 is predicted to guide the pseudouridylation of U119 of 18S ribosomal RNA (rRNA). Pseudouridylation is the to the different isomeric form pseudouridine.
In molecular biology, snoRNA U67 is a non-coding RNA molecule that belongs to the H/ACA class of snoRNAs which are thought to guide the sites of modification of uridines to pseudouridines. This snoRNA guides pseudouridylation of position U1445 in 18S rRNA. This RNA is expressed from the intron of the host gene EIF4A1.
In molecular biology, Small nucleolar RNA SNORA68 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".
In molecular biology, Small nucleolar RNA SNORA69 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".
In molecular biology, Small nucleolar RNA SNORA72 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".
In molecular biology, the small nucleolar RNA SNORA73 belongs to the H/ACA class of small nucleolar RNAs (snoRNAs). Vertebrate U17 is intron-encoded and ranges in length from 200-230 nucleotides, longer than most snoRNAs. It is one of the most abundant snoRNAs in human cells and is essential for the cleavage of pre-rRNA within the 5' external transcribed spacer (ETS). This cleavage leads to the formation of 18S rRNA. Regions of the U17 RNA are complementary to rRNA and act as guides for RNA/RNA interactions, although these regions do not seem to be well conserved between organisms.
In molecular biology, Small nucleolar RNA SNORA74 (U19) belongs to the H/ACA class of snoRNAs. snoRNAs bind a number of proteins to form snoRNP complexes. This class is thought to guide the sites of modification of uridines to pseudouridines by forming direct base pairing interactions with substrate RNAs. Targets may include ribosomal and spliceosomal RNAs but the exact functions of many snoRNAs, including U19, are not confirmed. Co-precipitation of U19 snoRNA with RNase MRP RNA suggests that U19 may be involved in pre-rRNA processing.
In molecular biology, small nucleolar RNA SNORA10 and small nuclear RNA SNORA64 are homologous members of the H/ACA class of small nucleolar RNA (snoRNA). This family of ncRNAs involved in the maturation of ribosomal RNA. snoRNA in this family act as guides in the modification of uridines to pseudouridines. This family includes the human snoRNAs U64 and ACA10 and mouse MBI-29.
In molecular biology, Small nucleolar RNA SNORA70 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a "guide RNA".
In molecular biology, Small nucleolar RNA SNORA77 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).