Small nucleolar RNA SNORD113

Last updated
Small nucleolar RNA SNORD113/SNORD114 family
RF00181.jpg
Predicted secondary structure and sequence conservation of SNORD113
Identifiers
SymbolSNORD113
Alt. Symbolssno_14q_I_II; sno_14q_I
Rfam RF00181
Other data
RNA type Gene; snRNA; snoRNA; CD-box
Domain(s) Eukaryota
GO GO:0006396 GO:0005730
SO SO:0000593
PDB structures PDBe

In molecular biology, Small nucleolar RNA SNORD113 (also known as C/D box snoRNA 14q(I)) is a small nucleolar RNA molecule which is located in the imprinted human 14q32 locus and may play a role in the evolution and/or mechanism of the epigenetic imprinting process. [1]

In humans the imprinted domain at 14q32 contains two clusters of tandemly repeated small nucleolar RNAs named 14q(I) and 14q(II) snoRNAs. These two clusters contain 9 and 31 highly related snoRNAs respectively. These two related snoRNAs are known as SNORD113 and SNORD114 respectively in the HGNC approved gene symbol nomenclature. The snoRNAs found in each cluster are clearly related and are simply referred to with a 1-9 or 1-31 suffix. All the snoRNAs in these clusters are intron encoded and are processed from the tissue-specific non-coding human MEG8 RNA, which lies downstream of the imprinted genes DLK1 and GTL2.

SNORD113 and SNORD114 belong to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. [2] However, SNORD113 and SNORD114 differ from most C/D box snoRNAs in their expression profiles (which is tissue specific) and the lack of complementarity to rRNA and SnRNA. As a result, they are not predicted to guide to 2'O-methylation of a rRNA or snRNA.

Homologues of SNORD113 and SNORD114 are found in the imprinted non-coding mouse transcript Rian where they are again found in tandem array of 9 highly related snoRNAs. These snoRNAs also display tissue specific (brain) expression. C/D box snoRNAs were also identified in the rat non-coding Bsr (brain-specific repetitive) RNA.

Another imprinted human locus 15q11q13 encodes tandemly repeated C/D box snoRNA genes which are expressed only from the paternal chromosome. Studies of human and mouse model systems have shown that deletion of the 29 copies of the C/D box snoRNA SNORD116 (HBII-85) from this locus has been shown to be the primary cause of Prader-Willi syndrome. [3] [4] [5] [6] [7] A possible role for tandemly repeated C/D snoRNA genes in the evolution and/or mechanism of the epigenetic imprinting process has been suggested. [1]

Related Research Articles

Prader–Willi syndrome Rare genetic disorder caused by part of the fathers chromosome 15 being missing

Prader–Willi syndrome (PWS) is a genetic disorder caused by a loss of function of specific genes on chromosome 15. In newborns, symptoms include weak muscles, poor feeding, and slow development. Beginning in childhood, those affected become constantly hungry, which often leads to obesity and type 2 diabetes. Mild to moderate intellectual impairment and behavioral problems are also typical of the disorder. Often, affected individuals have a narrow forehead, small hands and feet, short height, light skin and hair. Most are unable to have children.

In molecular biology, Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs, which are associated with methylation, and the H/ACA box snoRNAs, which are associated with pseudouridylation. SnoRNAs are commonly referred to as guide RNAs but should not be confused with the guide RNAs that direct RNA editing in trypanosomes.

Small nucleolar RNA SNORD115

In molecular biology, SNORD115 is a non-coding RNA (ncRNA) molecule known as a small nucleolar RNA which usually functions in guiding the modification of other non-coding RNAs. This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. HBII-52 refers to the human gene, whereas RBII-52 is used for the rat gene and MBII-52 is used for naming the mouse gene.

Small nucleolar RNA SNORD116 Non-coding RNA molecule involved in Prader–Willi syndrome

In molecular biology, SNORD116 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD16

In molecular biology, snoRNA U16 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD19

In molecular biology, SNORD19 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD45

In molecular biology, snoRNA U45 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD50

In molecular biology, snoRNA U50 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD56

In molecular biology, snoRNA U56 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD64

In molecular biology, SNORD64 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD65

In molecular biology, SNORD65 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. SNORD19 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs.

Small nucleolar RNA SNORD66

In molecular biology, SNORD66 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD67

In molecular biology, SNORD67 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD70

In molecular biology, snoRNA SNORD70 (HBII-234) is a non-coding RNA that belongs to the C/D family of snoRNAs. It is the human orthologue of the mouse MBII-234 and is predicted to guide 2'O-ribose methylation of the small 18S rRNA on position A512. It is hosted, together with HBII-95, by the core C/D box snoRNA protein encoding gene NOP5/NOP58.

Small nucleolar RNA SNORD71

In molecular biology, snoRNA HBII-239 belongs to the family of C/D snoRNAs. It is the human orthologue of the mouse MBII-239 described and is predicted to guide 2'O-ribose methylation of 5.8S rRNA on residue U14.

Small nucleolar RNA SNORD90

In molecular biology, snoRNA SNORD90 (HBII-295) is a non-coding RNA that belongs to the family of C/D snoRNAs. Initially described as HBII-295 this RNA has now been called SNORD70 by the HUGO Gene Nomenclature Committee. It is the human orthologue of the mouse MBII-295 and has no identified RNA target. This RNA is expressed from an intron of the MNAB/OR1K1 gene.

Small nucleolar SNORD12/SNORD106

In molecular biology, the small nucleolar RNAs SNORD106 and SNORD12 are two related snoRNAs which belongs to the C/D class of small nucleolar RNAs (snoRNAs). Both contain the conserved C (UGAUGA) and D (CUGA) box sequence motifs

Small nucleolar RNA SNORD23

In molecular biology, Small Nucleolar RNA SNORD23 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD88

In molecular biology, Small Nucleolar RNA SNORD88 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD92

In molecular biology, Small Nucleolar RNA SNORD92 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

References

  1. 1 2 Cavaillé J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP (2002). "Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region". Hum. Mol. Genet. 11 (13): 1527–38. doi: 10.1093/hmg/11.13.1527 . PMID   12045206.
  2. Galardi, S.; Fatica, A.; Bachi, A.; Scaloni, A.; Presutti, C.; Bozzoni, I. (October 2002). "Purified Box C/D snoRNPs Are Able to Reproduce Site-Specific 2'-O-Methylation of Target RNA in Vitro". Molecular and Cellular Biology . 22 (19): 6663–6668. doi:10.1128/MCB.22.19.6663-6668.2002. PMC   134041 . PMID   12215523.
  3. Skryabin BV, Gubar LV, Seeger B, et al. (2007). "Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation". PLOS Genet. 3 (12): e235. doi:10.1371/journal.pgen.0030235. PMC   2323313 . PMID   18166085.
  4. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008). "Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster". Nat Genet. 40 (6): 719–21. doi:10.1038/ng.158. PMC   2705197 . PMID   18500341.
  5. Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U (2008). Akbarian S (ed.). "SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice". PLOS ONE. 3 (3): e1709. Bibcode:2008PLoSO...3.1709D. doi: 10.1371/journal.pone.0001709 . PMC   2248623 . PMID   18320030.
  6. Ding F, Prints Y, Dhar MS, Johnson DK, Garnacho-Montero C, Nicholls RD, Francke U (2005). "Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Willi syndrome mouse models". Mamm Genome. 16 (6): 424–31. doi:10.1007/s00335-005-2460-2. PMID   16075369. S2CID   12256515.
  7. de Smith AJ, Purmann C, Walters RG, et al. (June 2009). "A Deletion of the HBII-85 Class of Small Nucleolar RNAs (snoRNAs) is Associated with Hyperphagia, Obesity and Hypogonadism". Hum. Mol. Genet. 18 (17): 3257–65. doi:10.1093/hmg/ddp263. PMC   2722987 . PMID   19498035.