TIROS-4

Last updated

TIROS-4
Tiros iv.jpg
Image of TIROS-4.
Mission type Weather satellite
Operator NASA
Harvard designation1962 β 1
COSPAR ID 1962-002A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 226
Mission duration6 months
Spacecraft properties
Spacecraft type TIROS
Manufacturer RCA Astro  / GSFC
Launch mass129.3 kilograms (285 lb) [1]
Start of mission
Launch dateFebruary 8, 1962, 12:29 (1962-02-08UTC12:29Z) UTC [2]
Rocket Thor-Delta
Launch site Cape Canaveral LC-17A
End of mission
Last contactJune 30, 1962 (1962-07-01)
Orbital parameters
Reference system Geocentric
Regime Low Earth
Eccentricity 0.00894 [1]
Perigee altitude 712 kilometers (442 mi) [1]
Apogee altitude 840 kilometers (520 mi) [1]
Inclination 48.3° [1]
Period 100 minutes [1]
Epoch February 8, 1962 [1]
Instruments
Low Resolution Omnidirectional Radiometer
Widefield Radiometer
Scanning Radiometer
Television Camera System
  TIROS-3
TIROS-5  
 

TIROS-4 (also called TIROS-D and A9) was a spin-stabilized meteorological satellite. It was the fourth in a series of Television Infrared Observation Satellites.

Contents

Launch

TIROS-4 was launched on February 8, 1962, by a Thor-Delta rocket from Cape Canaveral Air Force Station, Florida. The spacecraft functioned nominally until June 30, 1962. The satellite orbited the Earth once every 1 hour and 30 minutes, at an inclination of 48.3°. Its perigee was 712 kilometers (442 mi) and apogee was 840 kilometers (520 mi). [1]

Mission

The satellite was in the form of an 18-sided right prism, 107 cm in diameter and 56 cm high. The top and sides of the spacecraft were covered with approximately 9000 1- by 2-cm silicon solar cells. It was equipped with two independent television camera subsystems for taking cloud cover pictures and three radiometers (two-channel low-resolution, omnidirectional, and five-channel scanning) for measuring radiation from the Earth and its atmosphere. The satellite spin rate was maintained between 8 and 12 rpm by the use of five diametrically opposed pairs of small solid-fuel thrusters.

The TIROS-4 spin axis could be oriented to within 1° to 2° accuracy by use of a magnetic control device consisting of 250 cores of wire wound around the outer surface of the spacecraft. The interaction between the induced magnetic field in the spacecraft and the Earth's magnetic field provided the necessary torque for attitude control. The flight control system also optimized the performance of the solar cells and television cameras and protected the 5 channel infrared radiometer from prolonged exposure to direct sunlight.

With the exception of the degraded response of the 5 channel scanning radiometer, the spacecraft performed normally until May 3, 1962, when one camera failed. On June 10, 1962, the other camera's tape recorder failed. The scanning radiometer provided usable data until June 30, 1962. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Mariner 2</span> 1962 space probe to Venus

Mariner 2, an American space probe to Venus, was the first robotic space probe to report successfully from a planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as 34,773 kilometers (21,607 mi) to Venus on December 14, 1962.

<span class="mw-page-title-main">TIROS-1</span> 1960 weather satellite

TIROS-1 was the first full-scale weather satellite, the first of a series of Television Infrared Observation Satellites (TIROS) placed in low Earth orbit.

<span class="mw-page-title-main">NOAA-17</span>

NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

<span class="mw-page-title-main">TIROS-2</span> Former American weather satellite

TIROS-2 was a spin-stabilized meteorological satellite. It was the second in a series of Television Infrared Observation Satellites. It re-entered in May 2014.

<span class="mw-page-title-main">ESSA-1</span> Former American weather satellite

ESSA-1 was a spin-stabilized operational meteorological satellite. Its name was derived from that of its oversight agency, the Environmental Science Services Administration (ESSA).

<span class="mw-page-title-main">ESSA-9</span> Meteorological satellite

ESSA-9, also known as TOS-G, was a meteorological satellite. Its name was derived from that of its oversight agency, the Environmental Science Services Administration (ESSA). ESSA-9 replaced the ESSA-7 satellite.

<span class="mw-page-title-main">Nimbus 7</span> Former U.S. meteorological satellite

Nimbus 7 was a meteorological satellite. It was the seventh and last in a series of the Nimbus program.

<span class="mw-page-title-main">TIROS-3</span> Former American weather satellite

TIROS-3 was a spin-stabilized meteorological satellite. It was the third in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-5</span> Former American weather satellite

TIROS 5 was a spin-stabilized meteorological satellite. It was the fifth in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-6</span> Former American weather satellite

TIROS 6 was a spin-stabilized meteorological satellite. It was the sixth in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-7</span> Former American weather satellite

TIROS-7 was a spin-stabilized meteorological satellite. It was the seventh in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-8</span> Former American weather satellite

TIROS-8 was a spin-stabilized meteorological satellite. It was the eighth in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-9</span> Former American weather satellite

TIROS-9 was a spin-stabilized meteorological satellite. It was the ninth in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">TIROS-10</span> Former American weather satellite

TIROS-10 was a spin-stabilized meteorological satellite. It was the tenth and last in a series of Television Infrared Observation Satellites.

<span class="mw-page-title-main">Nimbus 3</span> Former U.S. meteorological satellite

Nimbus 3 was a meteorological satellite. It was the third in a series of the Nimbus program.

<span class="mw-page-title-main">Nimbus 4</span> Former U.S. meteorological satellite

Nimbus 4 was a meteorological satellite. It was the fourth in a series of the Nimbus program.

<span class="mw-page-title-main">ITOS-B</span> Weather satellite

NOAA-1 was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS. ITOS-B was released on October 21, 1971, from the Vandenberg Air Force Base, California, with a Delta rocket. It failed to achieve a successful Earth orbit. A malfunction in the second stage launch vehicle caused the spacecraft to reenter the Earth's atmosphere about 1 hour after lift-off.

<span class="mw-page-title-main">NOAA-2</span>

NOAA-2, also known as ITOS-D was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS. NOAA-2 was launched on a Delta rocket on October 15, 1972. The launch carried one other satellite: AMSAT-OSCAR 6.

<span class="mw-page-title-main">NOAA-5</span> Weather satellite operated by NOAA

NOAA-5, also known as ITOS-H was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS, being the last of the series. NOAA-5 was launched on a Delta rocket on July 29, 1976.

References

  1. 1 2 3 4 5 6 7 8 "TIROS 4". National Space Science Data Center. Retrieved June 4, 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  2. McDowell, Jonathan. "Launch Log". Jonathan's Space Page. Retrieved June 4, 2018.
  3. "TIROS 4 (1962-004A)". NASA Goddard Space Flight Center. Retrieved June 4, 2018.
  4. Journal of the British Interplanetary Society, Vol. 19, pags. 386-409, 1963-1964