NOAA-12

Last updated

NOAA-12
NamesNOAA-D
Mission type Weather
Operator NOAA
COSPAR ID 1991-032A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 21263
Mission duration2 years (planned)
16 years (achieved)
Spacecraft properties
Spacecraft TIROS
Bus TIROS-N [1]
Manufacturer RCA Astro Electronics
Launch mass1,418 kg (3,126 lb) [2]
Dry mass735 kg (1,620 lb)
Dimensions Spacecraft : 3.71 m × 1.88 m (12.2 ft × 6.2 ft)
Solar array : 2.37 m × 4.91 m (7 ft 9 in × 16 ft 1 in)
Start of mission
Launch date14 May 1991, 15:52:03 UTC [3]
Rocket Atlas-E Star-37S-ISS
(Atlas S/N 50E)
Launch site Vandenberg, SLC-3W
Contractor Convair
End of mission
DisposalDecommissioned
Last contact10 August 2007 [4]
Orbital parameters
Reference system Geocentric orbit [5]
Regime Sun-synchronous orbit
Perigee altitude 821 km (510 mi)
Apogee altitude 841 km (523 mi)
Inclination 98.70°
Period 101.3 minutes
  NOAA-11
NOAA-13  

NOAA-12, also known as NOAA-D before launch, was an American weather satellite operated by National Oceanic and Atmospheric Administration (NOAA), an operational meteorological satellite for use in the National Environmental Satellite, Data, and Information Service (NESDIS). The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. [6]

Contents

Launch

It was launched into a Sun-synchronous orbit by NASA aboard an Atlas E S/N 50E launch vehicle on 14 May 1991 from Vandenberg Air Force Base, Vandenberg Space Launch Complex 3 (SLC-3W), California. [5]

Spacecraft

The satellite was based upon the DMSP Block 5D satellite bus developed for the U.S. Air Force, and it was capable of maintaining an Earth-pointing accuracy of better than ± 0.1° with a motion rate of less than 0.035 degrees/second. Based on the experimental TIROS-N satellite, [6] it performed monitoring of ice and snow cover, agriculture, oceanography, volcanism, ozone and the space environment, in addition to its regular meteorological observations. [7] The satellite design provides an economical and stable sun-synchronous (morning equator-crossing) platform for advanced operational instruments to measure the Atmosphere of Earth, its surface and cloud cover, and the near-space environment. [6] The Satellite Operations Control Center is located in Suitland, Maryland. Major command stations for satellite control are located near Fairbanks, Alaska and on Wallops Island, Virginia; a backup station for connection when the satellite is unavailable from the main stations is located at Point Barrow, Alaska.

Instruments

Primary sensors included the Advanced Very High Resolution Radiometer (AVHRR/2) for global cloud cover observations, and the TIROS Operational Vertical Sounder (TOVS) suite for atmospheric temperature and water profiling. Secondary experiments consisted of a Space Environment Monitor (SEM) measuring proton and electron fluxes, and the Data Collection and Platform Location System (DCPLS) for relaying data from balloons and ocean buoys for the Argos system. The TOVS suite consists of two subsystems: the High Resolution Infrared Radiation Sounder 2 (HIRS/2), and the Microwave Sounding Unit (MSU). [8]

Advanced Very High Resolution Radiometer (AVHRR/2)

The NOAA-12 Advanced Very High Resolution Radiometer (AVHRR/2) was a five-channel scanning radiometer capable of providing global daytime and nighttime sea-surface temperature and information about ice, snow, and clouds. These data were obtained on a daily basis for use in weather analysis and forecasting. The multispectral radiometer operated in the scanning mode and measured emitted and reflected radiation in the following spectral intervals: channel 1 (visible), 0.55 to 0.90 micrometer (μm); channel 2 (near infrared), 0.725 μm to detector cutoff around 1.1 μm; channel 3 (IR window), 3.55 to 3.93 μm; channel 4 (IR window), 10.3 to 11.3 μm, and channel 5 (IR window), 11.5 to 12.5 μm.. All five channels had a spatial resolution of 1.1 km, and the two IR-window channels had a thermal resolution of 0.12 Kelvin at 300 Kelvin. The AVHRR was capable of operating in both real-time or recorded modes. Real-time or direct readout data were transmitted to ground stations both at low (4 km) resolution via automatic picture transmission (APT) and at high (1 km) resolution via high-resolution picture transmission (HRPT). Data recorded on board were available for processing in the NOAA central computer facility. They included global area coverage (GAC) data, with a resolution of 4 km, and local area coverage (LAC), that contained data from selected portions of each orbit with a 1-km resolution. Identical experiments were flown on other spacecraft in the TIROS-N/NOAA series. [9]

TIROS Operational Vertical Sounder (TOVS)

The TIROS Operational Vertical Sounder (TOVS) consisted of two instruments: the High-resolution Infrared Radiation Sounder modification 2 (HIRS/2), and the Microwave Sounding Unit (MSU). Both two instruments were designed to determine radiances needed to calculate temperature and humidity profiles of the atmosphere from the surface to the stratosphere (approximately 1 mb). The HIRS/2 instrument had 20 channels in the following spectral intervals: channels 1 through 5, the 15-micrometer (μm) CO2 bands (15.0, 14.7, 14.5, 14.2, and 14.0 μm); channels 6 and 7, the 13.7- and 13.4-μm CO2/H2O bands; channel 8, the 11.1-μm window region; channel 9, the 9.7-μm ozone band; channels 10, 11, and 12, the 6-μm water vapor bands (8.3, 7.3, and 6.7 μm); channels 13 and 14, the 4.57-μm and 4.52-μm N2O bands; channels 15 and 16, the 4.46-μm and 4.40-μm CO2/N2O bands; channel 17, the 4.24-μm CO2 band; channels 18 and 19, the 4.0-μm and 3.7-μm window bands; and channel 20, the 0.70-μm visible region. Resolution for all channels is 17.4 km at nadir. The HIRS/2 instrument provides data for calculations of temperature profiles from the surface to 10 mb, water vapor content at three levels of the atmosphere. The second instrument, the MSU, has four channels operating in the 50- to 60-GHz oxygen band (50.31, 53.73, 54.96 and 57.95 GHz) to obtain temperature profiles which are free of cloud interference. The same experiments are flown on other spacecraft in the TIROS-N/NOAA series. The NOAA-12 does not carry the SSU (Stratospheric Sounding Unit) instrument as on the NOAA-9 and NOAA-11 TOVS. [10]

Data Collection System (DCS-Argos)

The Data Collection System (DCS) on NOAA-12, also known as Argos, was designed and built in France by the (CNES) to meet the meteorological data needs of the United States. The system receives low-duty-cycle transmissions of meteorological observations from free-floating balloons, ocean buoys, other satellites, and fixed ground-based sensor platforms distributed around the globe. The DCS is able to determine platform location using an inverse Doppler technique and is able to acquire data from any place in the world, particularly in the Polar regions of Earth. These observations are organized on board the spacecraft and retransmitted when the spacecraft comes within range of a command and data acquisition (CDA) station. The Argos data is separated from other spacecraft telemetry and relayed to the CNES processing center in Toulouse, France for processing and relay to users. The system operates in 3 bands: 137.77 MHz, 136.77 MHz, and 401.65 MHz. Identical systems are flown on other spacecraft in the TIROS-N/NOAA series. Downlinked to Russian and United States receiving stations. [11]

Space Environment Monitor (SEM)

The Space Environmental Monitor (SEM) was an extension of the solar proton monitoring experiment flown on the ITOS spacecraft series. The object was to measure proton flux, electron flux density, and energy spectrum in the upper atmosphere. The experiment package consisted of three detector systems and a data processing unit. The Medium Energy Proton and Electron Detector (MEPED) measured protons in five energy ranges from 30 keV to >2.5 MeV; electrons above 30, 100, and 300 keV; protons and electrons (inseparable) above 6 MeV; and omni-directional protons above 16, 36, and 80 MeV. The High-Energy Proton Alpha Telescope (HEPAT), which had a 48° viewing cone, viewed in the anti-Earth direction and measured protons in four energy ranges above 370 MeV and alpha particles in two energy ranges above 850 MeV/nucleon. The Total Energy Detector (TED) measured electrons and protons between 300 eV and 20 keV. [12]

Science objectives

Mission

The last contact occurred on 10 August 2007. [2]

Related Research Articles

<span class="mw-page-title-main">Television Infrared Observation Satellite</span> Series of early American weather satellites

Television InfraRed Observation Satellite (TIROS) is a series of early weather satellites launched by the United States, beginning with TIROS-1 in 1960. TIROS was the first satellite that was capable of remote sensing of the Earth, enabling scientists to view the Earth from a new perspective: space. The program, promoted by Harry Wexler, proved the usefulness of satellite weather observation, at a time when military reconnaissance satellites were secretly in development or use. TIROS demonstrated at that time that "the key to genius is often simplicity". TIROS is an acronym of "Television InfraRed Observation Satellite" and is also the plural of "tiro" which means "a young soldier, a beginner".

<span class="mw-page-title-main">Advanced microwave sounding unit</span> Instrument installed on meteorological satellites

The advanced microwave sounding unit (AMSU) is a multi-channel microwave radiometer installed on meteorological satellites. The instrument examines several bands of microwave radiation from the atmosphere to perform atmospheric sounding of temperature and moisture levels.

<span class="mw-page-title-main">Advanced very-high-resolution radiometer</span>

The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.

<span class="mw-page-title-main">NOAA-19</span> Weather satellite

NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon Sun-synchronous orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-17</span>

NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.

<span class="mw-page-title-main">NOAA-16</span>

NOAA-16, also known as NOAA-L before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-16 continued the series of Advanced TIROS-N (ATN) spacecraft that began with the launch of NOAA-8 (NOAA-E) in 1983; but it had additional new and improved instrumentation over the NOAA A-K series and a new launch vehicle. It was launched on 21 September 2000 and, following an unknown anomaly, it was decommissioned on 9 June 2014. In November of 2015 it broke up in orbit, creating more than 200 pieces of debris.

<span class="mw-page-title-main">NOAA-18</span>

NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-15</span> Longest Operating Weather Satellite

NOAA-15, also known as NOAA-K before launch, is an operational, polar-orbiting of the NASA-provided Television Infrared Observation Satellite (TIROS) series of weather forecasting satellite operated by National Oceanic and Atmospheric Administration (NOAA). NOAA-15 was the latest in the Advanced TIROS-N (ATN) series. It provided support to environmental monitoring by complementing the NOAA/NESS Geostationary Operational Environmental Satellite program (GOES).

The Polar-orbiting Operational Environmental Satellite (POES) is a constellation of polar orbiting weather satellites funded by the National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with the intent of improving the accuracy and detail of weather analysis and forecasting. The spacecraft were provided by NASA and the European Space Agency (ESA), and NASA's Goddard Space Flight Center oversaw the manufacture, integration and test of the NASA-provided TIROS satellites. The first polar-orbiting weather satellite launched as part of the POES constellation was the Television Infrared Observation Satellite-N (TIROS-N), which was launched on 13 October 1978. The final spacecraft, NOAA-19, was launched on 6 February 2009. The ESA-provided MetOp satellite operated by EUMETSAT utilize POES-heritage instruments for the purpose of data continuity. The Joint Polar Satellite System, which was launched on 18 November 2017, is the successor to the POES Program.

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

<span class="mw-page-title-main">NOAA-7</span>

NOAA-7, known as NOAA-C before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. An earlier launch, NOAA-B, was scheduled to become NOAA-7, however NOAA-B failed to reach its required orbit.

NOAA-6, known as NOAA-A before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978–1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA B was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

<span class="mw-page-title-main">NOAA-20</span> NASA/NOAA weather satellite (2017–Present)

NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.

<span class="mw-page-title-main">NOAA-5</span> Weather satellite operated by NOAA

NOAA-5, also known as ITOS-H was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS, being the last of the series. NOAA-5 was launched on a Delta rocket on July 29, 1976.

<span class="mw-page-title-main">NOAA-8</span> Weather satellite

NOAA-8, known as NOAA-E before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was first of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

<span class="mw-page-title-main">NOAA-9</span> American weather satellite

NOAA-9, known as NOAA-F before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the second of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-11, known as NOAA-H before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Operational Environmental Satellite System (NOESS) and for support of the Global Atmospheric Research Program (GARP) during 1978–1984. It was the fourth of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-14, also known as NOAA-J before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the third-generation operational, Polar Orbiting Environmental Satellite (POES) series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983.

References

  1. "Tiros N". Encyclopedia Astronautica. Archived from the original on 28 December 2016. Retrieved 15 January 2017.
  2. 1 2 "Satellite: NOAA-12". World Meteorological Organization (WMO). 29 December 2020. Retrieved 29 December 2020.
  3. McDowell, Jonathan. "Launch Log". Jonathan's Space Report. Retrieved 29 December 2020.
  4. "POES Decommissioned Satellites". United States Department of Commerce. NOAA. 29 January 2015. Retrieved 6 July 2018.
  5. 1 2 "Trajectory: NOAA 12 1991-032A". NASA. 14 May 2020. Retrieved 29 December 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. 1 2 3 "Display: NOAA 12 1991-032A". NASA. 14 May 2020. Retrieved 2 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "CEOS EO Handbook - Mission Summary - NOAA-12". CEOS Database. European Space Agency (ESA). Retrieved 15 January 2017.
  8. "NOAA-12: Experiments". NSSDC. NASA GSFC. Archived from the original on 23 September 2008. Retrieved 15 January 2017.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. "AVHRR/1 1991-032A". NASA. 14 May 2020. Retrieved 1 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. "TOVS 1991-032A". NASA. 14 May 2020. Retrieved 1 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "DCS 1991-032A". NASA. 14 May 2020. Retrieved 1 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "SEM 1991-032A". NASA. 14 May 2020. Retrieved 1 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .