This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Company type | Public |
---|---|
| |
Industry | Display, Lighting, Technology, Computer Hardware |
Founded | 1994 |
Headquarters | , U.S. |
Key people | Sid Rosenblatt CFO; Steven V. Abramson CEO |
Products | Organic Light Emitting Diodes |
Website | oled |
Universal Display Corporation is a developer and manufacturer of organic light emitting diodes (OLED) technologies and materials as well as provider of services to the display and lighting industries. It is also an OLED research company. Founded in 1994, the company currently owns or has exclusive, co-exclusive or sole license rights with respect to more than 3,000 issued and pending patents worldwide for the commercialization of phosphorescent based OLEDs and also flexible, transparent and stacked OLEDs - for both display and lighting applications. Its phosphorescent OLED technologies and materials are licensed and supplied to companies such as Samsung, LG, AU Optronics CMEL, Pioneer, Panasonic Idemitsu OLED lighting and Konica Minolta.
UDC is working with many other companies, including Sony, DuPont and Novaled. Back in 2009 UDC claimed that "virtually all AMOLEDs on the market use our technology". Based in Ewing, New Jersey, with international offices in Ireland, South Korea, Hong Kong, Japan and Taiwan, Universal Display works with a network of organizations, including Princeton University, the University of Southern California, the University of Michigan, and PPG Industries. [1]
UDC has been subject to a number of patent disputes. The patents however have been upheld as valid. [2]
The different manufacturing process of OLEDs lends itself to several advantages over flat panel displays made with current LCD technology.
Some disadvantages include:
According to OLED Display "Samsung Display uses different Sub Pixel Matrix technologies for their smartphone Super-Amoled Displays. For the Galaxy S4 and S5 they use the Diamond Pixel Matrix." [10]
Universal Display's OLED screens currently feature in Samsung's Galaxy S, S II and S III, S IV and S V smartphones. The Galaxy S3 sold 10 million units in the first three months after its launch in April 2012. Also, their Galaxy Note has sold 10 million units since launch.
Samsung's new flagship smartphone, the Galaxy S4, sports a 4.99" Full-HD (1920x1080, 441 PPI) Super AMOLED display behind a Corning Gorilla Glass 3. [11]
Universal Display reported that Samsung Display Corporation (SDC) adopted UDC's green PHOLED (host and emitter) in the 5" Full-HD Super AMOLED display used in the GS4 smartphone. This is a significant development as the green PHOLED increases energy efficiency of displays by up to 25% [2]
Nokia's new Lumia 1020 smartphone and BlackBerry's Q10 and Z30 models are the most recent phones to sport OLED screens. [12]
In October 2013, Samsung released the first ever curved display smartphone called the Galaxy-Round. Samsung also introduced the "Roll Effect" where when the phone's screen is off and is rolled, it displays basic information like time or battery percentage. [13] While it is possible to curve LCD screens, analysts say OLED screens provide better technical benefits. [14]
The Galaxy S5, launched in Feb 2014, has a 5inch Super AMOLED screen. The unique feature is the GS5 also has a new software feature - when the battery is low (10%), it switches to an ultra power-saving mode which changes the screen to monochrome, lowers the brightness and closes all "non essential" features. In this low-power mode, the GS5 can last up to 24 hours in standby on that 10% battery. [15]
Samsung introduced the Galaxy Round smartphone in the Korean market in October 2013. The device features a 1080p screen, measuring 5.7 inches (14 cm), that curves on the vertical axis in a rounded case. The corporation has promoted the following advantages: A new feature called "Round Interaction" that allows users to look at information by tilting the handset on a flat surface with the screen off, and the feel of one continuous transition when the user switches between home screens. [16]
In September 2013 Samsung unveiled their Galaxy Gear Smartwatch having a 1.6 inch OLED screen and multiple apps to link the watch to an Android (operating system) smartphone. [17] It originally went on sale in the US in October of 2013 for $299 and featured a 1.63" 320x320 (275 PPI) Super AMOLED display, a 1.9 mp camera (can do 720p videos), 800Mhz processor, 4GB of storage, 512MB of RAM, Bluetooth 4, and a 315 mAh non-removable battery. [18]
The LG G Watch R is smartwatch featuring a circular face and an OLED screen. [19]
LG has released a second premium smart watch called the "Urbane" which retails for $590. [20]
OLED displays are expected to dominate the smart watch market with 58% market share. [21]
Apple began using OLED panels in its watches in 2015 and all subsequent watches. [22]
"Phablets" are defined as a device that has a screen between 5 and 7 inches and is part phone-part tablet. Examples include the Galaxy Note I, II and III. Samsung unveiled their Galaxy Note 3 at the IFA electronics show in September 2013. The Galaxy Note 3 has a 5.7 inch AMOLED screen. [23] Display Mate tested the screen on the Galaxy Note 3 and say it is the best OLED screen they have tested and is superior to all LCD screens they have tested. [24] They were quoted as saying: "The most notable advancement in this new panel is the high brightness. It can achieve 660 cd/m2 in high ambient light. It's not just 55% brighter than the Note 2, it's actually the brightest display ever tested at DisplayMate. A very notable achievement for Samsung's OLEDs, which were lagging behind LCDs in brightness." [24]
Cnet also reviewed the Galaxy Note 3 and had this to say about the AMOLED screen:
"Trust me when I say that the Samsung Galaxy Note 3's screen is simply gorgeous. Measuring a vast 5.7 inches across, the AMOLED display has an ultracrisp full HD resolution (1,920x1,080 pixels) which translates into an amazingly sharp 385ppi. That's a level of detail that puts the smaller screens of the iPhone 5S (4-inch, 326ppi) and Samsung's own Galaxy S4 (5-inch, 441ppi) to shame." [25]
On September 3, 2014, at IFA Berlin, Samsung unveiled a successor to the Galaxy Note 3, the Galaxy Note 4. The new model introduced a new design with a plastic leather backing and metal frame, a 5.7-inch (145 mm) QHD display, a 16MP camera with OIS, improved S-Pen, an upgraded digitizer with 2,048 levels of pressure sensitivity and expanded functionality, fingerprint scanner, and other features taken from the Galaxy S5.
Panasonic have showcased a 20-inch OLED screened tablet with a resolution of 4K or (3840×2160 Pixels) [26]
Samsung have released two Galaxy Tablets using OLED technology. The Galaxy Tab S 10.5 is released with Android 4.4.2 Kitkat. Samsung has customized the interface with its TouchWiz Nature UX 3.0 software. As well as the standard suite of Google apps, it has Samsung apps such as ChatON, S Suggest, S Voice, S Translator, S Planner, WatchON, Smart Stay, Multi-Window, Group Play, All Share Play, Samsung Magazine, Professional pack, Multi-user mode, SideSync 3.0, and Gear/Gear Fit manager. [27]
The Galaxy Tab S 10.5 is available in WiFi-only and 4G/LTE & WiFi variants. Storage ranges from 16 GB to 32 GB depending on the model, with a microSDXC card slot for expansion up to 128 GB. It has a 10.5-inch WQXGA Super AMOLED screen with a resolution of 2560x1600 pixels and a pixel density of 287 ppi.
The Galaxy Tab S 8.4 is released with Android 4.4.2 Kitkat. Samsung has customized the interface with its TouchWiz Nature UX 3.0 software. As well as the standard suite of Google apps, it has Samsung apps such as ChatON, S Suggest, S Voice, S Translator, S Planner, WatchON, Smart Stay, Multi-Window, Group Play, All Share Play, Samsung Magazine, Professional pack, Multi-user mode, SideSync 3.0, and Gear/Gear fit manager. [27]
The Galaxy Tab S 8.4 is available in WiFi-only and 4G/LTE & WiFi variants. Storage ranges from 16 GB to 32 GB depending on the model, with a microSDXC card slot for expansion up to 128 GB. [28] It has an 8.4-inch Full HD Super AMOLED screen with a resolution of 2560x1600 pixels and a pixel density of 359 ppi. It also features a 2.1 MP front camera without flash and a rear-facing 8.0 MP AF camera with LED flash. It also has the ability to record HD videos.
Samsung and LG-Display showed 55-inch OLED-Television devices at CES-2012. But both companies had to delay their mass production. Also AUO, Sony and Epson will start AMOLED-TV production in 2014. [29]
In June 2013 Samsung announced the Korean availability of a 55-inch curved OLED HDTV. Priced at 15 million Korean won (around $13,500). Samsung also reiterates the claim LG made when it launched its own curved OLED model that "keeping all parts of the screen an equal distance from the viewer makes for a better viewing experience." [30] By August 2013, Samsung dropped the price of the OLED television by 30% claiming "better yields" in manufacturing.
In September 2013 at the IFA electronics show, Samsung unveiled their 98-inch 4K AMOLED television. [31]
LG showcased an Ultra High Definition (UHD) curved 77inch screen at the IFA electronics show. This is a 4K WRGB OLEd screen. [32] In October 2014, LG reported that their Television sales has jumped 20x in volume shipments since 2013. [33]
CNET reviewed the LG 55EC9300 OLED Television in September 2014 and called it "The best. Picture. Ever." Combining the best qualities of LED and Plasma without the disadvantages. [34]
With the arrival of Quantum Dot LCD displays, LG released an article describing why they still see OLED as the future of Television displays: "In fact, OLED technology is the technology that is so much advanced that it should not be compared to an LCD based QD. Hence, even though LG already has the technology to create QD backlighting, it is focusing on developing OLED".
Consumer Reports, an American Magazine covering reviews of consumer products, published their review of OLED televisions saying that their TV project leader, Claudio Ciacci, would pick LG's OLED TV over every other TV model tested in 2014. "It has all the advantages of both LCD and Plasma Televisions without any of the weakness." [35]
In January 2015, LG Display signed a long-term agreement with UDC for the supply of OLED materials and the right to use their patented OLED emitters. LG is the leader in the push for OLED Televisions. [36]
In 2017 LG revealed five new models of OLED TV's, the flagship model being as thin as 0.9mm. [37]
The Korea Times claims that Google's next gen Google Glass HMD (or "wearable computer") will use OLED microdisplays made by Samsung Display, with licensed technology from Universal Display. [38]
Sony have announced the 3rd generation of their Heads Up Micro-Displays (HMD) using OLED panels from UDC. [39]
OLEDs enable screens to be made in curved or flexible format. Samsung's flexible AMOLEDs will be fabricated on a plastic (Polyimide) substrate and will be able to withstand high temperature (up to 350-400 degrees). The displays can be bendable - but since the first products will use them inside rigid glass cases - so it'll actually be "curved" displays and not flexible ones. A plastic based AMOLED will be shatterproof, and will also be lighter and thinner compared to glass based OLEDs. [40]
OLED Info reports that for flexible displays on plastic, UDC's UniversalBarrier single-layer encapsulation technology is being evaluated by Samsung. UDC has a working 6" R&D deposition machine for the encapsulation layer. [41] They go on to describe how Corning Glass have developed a flexible glass to help speed up the adoption of bendable OLED screens. "On Aug. 28 2013, Corning and AU Optronics announced that Corning is an important and strategic highperformance display glass collaborator for AUO’s line of AMOLED panels. AUO selected the Corning Lotus Glass platform based on the glass substrate’s outstanding thermal and dimensional stability. This aids AUO with efficient manufacturing during the high-temperature processes that are required to develop its AMOLED panels." Corning is also developing a Roll to Roll manufacturing process that will greatly reduce costs of mass-producing flexible displays. [42]
UBI Research published a new report on flexible OLED displays, forecasting a very fast growth: from 20 million units in 2012 to 150 million units in 2013. UBI sees $6.3 billion in flexible OLED revenues in 2017. This is far more optimistic than the recent report by Markets&Markets who see the entire flexible display market at $3.2 billion in 2017. [43]
The Flexible Display Center announced that it has successfully manufactured the world's largest flexible color AMOLED prototype using advanced mixed oxide thin film transistors (TFTs). Measuring 7.4 diagonal inches, the device was developed at the FDC in conjunction with Army Research Labs scientists. It also meets a critical target set by the U.S. Department of Defense to advance the development of full-color, full-motion video flexible OLED displays for use in thin, lightweight, bendable and highly rugged devices. "This is a significant manufacturing breakthrough for flexible display technology," said Nick Colaneri, director of the FDC. "It provides a realistic path forward for the production of high performance, flexible, full color OLED displays, accelerating commercialization of the technology in the process." [44]
Universal Display's Sid Rosenblatt talking about the future of OLED technology was quoted as saying: "Samsung is going to introduce flexible screens, but the flexible plastic substrates are difficult to manufacture. Plastic is porous and oxygen with moisture causes OLEDs to degrade. [However]...These kind of displays are unbreakable, flexible on stainless steel foil. It would result in a thinner device because you don’t have the pieces of glass. It could conform around the sides, so you can show information on the sides. It would be lighter. So you can either make it smaller or thinner or you can make a larger battery so that it lasts longer. The challenges are encapsulation, so you need an encapsulation process. The temperature is too high to deposit them directly to the plastic, so they do is they literally deposit them on glass." Further SID Rosenblatt thinks that flexible OLEDs will be initially a niche market for the high end. [45]
iSuppli, a market research firm, sees the flexible OLED display market growing significantly from 2013 to 2020. Their estimates are from a market value of $21 million in 2013 to $100 million in 2014 and reaching $12 billion by 2020. IHS says this will bring about "unprecedented change(s) in flat displays". [46] Both LG and Samsung believe that flexible displays will make up as much as 40% of the Smartphone maker by 2018. [47]
At the Flextech Conference in Phoenix, Arizona, Plastic Logic and Novaled demonstrated a new, really bendable, and completely organic AMOLED display. OLED News said: "This is a very important technological advance. For the first time we have an entirely plastic AMOLED with backplane electronics manufactured in a special low temperature process. The industrial techniques applied open up real prospects of mass producing these displays at a very competitive unit cost." Plastic Logic CEO, Indro Mukerjee, spoke of 2014 as the year when wearable technology is going to really take off. He described the advance that has been made in the following: "Flexible electronics is a reality, already proven through the development and manufacture of plastic, bendable displays and sensors. For the first time a fully organic, plastic, flexible AMOLED demonstration has been achieved with a real industrial fabrication process. This marks the start of a revolution in wearable products, the next frontier in consumer." [48]
Apple began using OLED panels in its watches in 2015 and in its laptops in 2016 with the introduction of an OLED touchbar to the MacBook Pro. [49] In 2017, Apple announced the introduction of their tenth anniversary iPhone X with their own optimized OLED display licensed from Universal Display Corporation.All subsequent iPhones have had OLED displays. [50] Apple has also expanded the use of OLED displays into iPads and also future MacBooks [51]
OLED's have distinct advantages in lighting too, providing low temperature, low energy use lighting panels that can be used anywhere, even in cars. OSRAM believes that the next technological development for car lighting is OLEDs. The major advantage is that they provide "completely new options for the design of light and luminaires". The cars of the future, according to Osram will have both LED and OLED lighting sources. [52] OSRAM in 2011, built an OLED Lighting production line in Regensburg, Germany. The company invested 50 million euros (around $70 million) in the production facility and in research on OLED applications. [53]
The German government launched a new €34 million (about $44 million) project called OLYMP ("Organic Light-emitting sYstems based on energy and cost-efficient Materials and Processes") that intends to improve "OLED lighting efficiency and lifetime". [54]
Philips have said in 2014 OLED's will be ready to enter the lighting market in a more significant way. Dietmar Thomas, Philips' OLED communication and brand manager says: "Philips' OLED performance increased dramatically in the past 2-3 years. Their most advanced panel (the GL350 Gen-2) offers 200 lumens and 45 lm/W. In mid 2014, Philips expects to release a panel (the GL350 Gen-3?) that will be brighter (300 lumens) and more efficient (60 lm/W). " [55]
According to OLED-Display.net "OLED technology has been found useful in creating new forms of lighting. Because of the potential inherent with OLED technology in terms of its flexibility, transparency and thickness, a myriad of new possibilities exist for OLED illumination, lighting and light display shows. The potential is almost infinite, because OLED technology has proven to show lifetimes over 50,000 hours and because it burns at rates that surpass the efficiency of halogen and can reach up to 150 lm/W. In addition, OLED lighting utilizes less CO2, requires less energy and contains no toxic substances. This opens up a revolutionary concept of lighting displays and light based art conceptions." [10]
"OLED technology is at a premium relative to LED, but there are superior lighting quality benefits," said Jeannine Fisher Wang, director of business development and marketing for Acuity's OLED group. "The overall design and construction of these luminaires is very high quality, reflective of the superior nature of the OLED light source." OLED will become mainstream, predicts Darice Liu, a spokeswoman for UDC. "We believe that OLED lighting has the potential to dominate many of the residential and commercial market applications," [56]
In 2012, UDC reported two favorable patent decisions. The first one is from Japan, regarding two patents (JP781 and JP158) relating to UDC's L2MX technology. The patents were upheld as valid by the Japanese patent office. The second decision related to one of the OVJP patents in Korea. The Korean patent office issued a favorable decision which upheld the patent as valid. [2] Some financial analysts have contended that Universal Display's patents are likely to be rescinded in November 2013 at the EPO Board of Appeal. However, Oppenheimer analyst Andrew Uekwitz already chimed in to defend them, saying Asensio's latest article "contains nothing new or valuable" that wasn't already disclosed in its most recent quarterly report. [57]
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden: preset words, digits, and seven-segment displays are all examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight.
An organic light-emitting diode (OLED), also known as organic electroluminescentdiode, is a type of light-emitting diode (LED) in which the emissive electroluminescent layer is an organic compound film that emits light in response to an electric current. This organic layer is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, and portable systems such as smartphones and handheld game consoles. A major area of research is the development of white OLED devices for use in solid-state lighting applications.
A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.
This is a comparison of various properties of different display technologies.
Samsung Display (Korean: 삼성디스플레이) is a company selling display devices with OLED and QD-OLED technology. Display markets include smartphones, TVs, laptops, computer monitors, smartwatches, VR, game consoles, and automotive applications.
A flexible display or rollable display is an electronic visual display which is flexible in nature, as opposed to the traditional flat screen displays used in most electronic devices. In recent years there has been a growing interest from numerous consumer electronics manufacturers to apply this display technology in e-readers, mobile phones and other consumer electronics. Such screens can be rolled up like a scroll without the image or text being distorted. Technologies involved in building a rollable display include electronic ink, Gyricon, Organic LCD, and OLED.
AMOLED is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.
A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut. Light travels through QD layer film and traditional RGB filters made from color pigments, or through QD filters with red/green QD color converters and blue passthrough. Although the QD color filter technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV active-matrix organic light-emitting diode (AMOLED) or QNED/MicroLED display panels. LED-backlit LCDs are the main application of photo-emissive quantum dots, though blue OLED panels with QD color filters are being researched.
PenTile matrix is a family of patented subpixel matrix schemes used in electronic device displays. PenTile is a trademark of Samsung. PenTile matrices are used in AMOLED and LCD displays.
IPS is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
The Samsung Galaxy S LCD or Samsung Galaxy SL (GT-I9003) was an Android smartphone designed and manufactured by Samsung Electronics that was released in February 2011 due to shortage of Super AMOLED displays. It features a 1 GHz ARM Cortex-A8 processor, 4 GB of internal flash memory, a 4-inch 480x800 pixel WVGA Super Clear LCD capacitive touchscreen display, Wi-Fi connectivity, a 5-megapixel camera with a resolution of 2560x1920, and a front-facing 0.3 MP (640x480) VGA camera.
The Samsung Galaxy S series is a line of flagship Android smartphone and tablet computer produced by Samsung Electronics. In conjunction with the foldable Galaxy Z series, the lineup serves as Samsung's flagship smartphone lineup.
A see-through display or transparent display is an electronic display that allows the user to see what is shown on the screen while still being able to see through it. The main applications of this type of display are in head-up displays, augmented reality systems, digital signage, and general large-scale spatial light modulation. They should be distinguished from image-combination systems which achieve visually similar effects by optically combining multiple images in the field of view. Transparent displays embed the active matrix of the display in the field of view, which generally allows them to be more compact than combination-based systems.
The Samsung Galaxy Note Edge is an Android phablet produced by Samsung Electronics. Unveiled during a Samsung press conference at IFA Berlin on September 3, 2014, alongside its sister, the Galaxy Note 4, it is distinguished by a display that curves across the right side of the device, which can be used as a sidebar to display application shortcuts, a virtual camera shutter button, notifications, and other information.
MicroLED, also known as micro-LED, mLED or μLED is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Inorganic semiconductor microLED (μLED) technology was first invented in 2000 by the research group of Hongxing Jiang and Jingyu Lin of Texas Tech University while they were at Kansas State University. The first high-resolution and video-capable InGaN microLED microdisplay in VGA format was realized in 2009 by Hongxing Jiang and Jingyu Lin and their colleagues at Texas Tech University and III-N Technology, Inc. via active driving of microLED array by a complementary metal-oxide semiconductor (CMOS) IC. Compared to widespread LCD technology, microLED displays offer better contrast, response times, and energy efficiency. They are also capable of high speed modulation, and have been proposed for chip-to-chip interconnect applications.
A foldable smartphone is a smartphone with a folding form factor. It is reminiscent of the clamshell design of many earlier feature phones. Some variants of the concept use multiple touchscreen panels on a hinge, while other designs utilise a flexible display. Concepts of such devices date back as early as Nokia's "Morph" concept in 2008, and a concept presented by Samsung Electronics in 2013, while the first commercially available folding smartphones with OLED displays began to emerge in November 2018.
BOE Technology Group Co., Ltd., or Jingdongfang, is a Chinese electronic components producer founded in April 1993. Its core businesses are interface devices, smart IoT systems and smart medicine and engineering integration. BOE is one of the world's largest manufacturers of LCD, OLEDs and flexible displays.
A Notification LED is a small RGB or monochrome LED light usually present on the front-facing screen bezel of smartphones and feature phones whose purpose is to blink or pulse to notify the phone user of missed calls, incoming SMS messages, notifications from other apps, low battery warning, etc., and optionally to facilitate locating the mobile phone in darkness. It usually pulses in a continuous way to draw the attention of the user. It is a part of the device's notification system that uses a cloud-powered push notification service to relay remote notification messages to the user, or local notifications. Similar to audio notifications, a notification LED is a very battery-efficient way to inform the user of new notifications without turning on the screen at all.