Company type | Public |
---|---|
NYSE: CW S&P 400 Component | |
Industry |
|
Predecessor | |
Founded | July 5, 1929 in Buffalo, New York, United States |
Headquarters | , |
Key people |
|
Revenue | US$2.845 Billion (Fiscal Year Ended 31 December 2023) [1] |
US$486.600 Million (Fiscal Year Ended 31 December 2023) [1] | |
US$354.500 Million (Fiscal Year Ended 31 December 2023) [1] | |
Total assets | US$4.621 Billion (December 31, 2023) [2] [1] |
Total equity | US$2.328 Billion (Fiscal Year Ended 31 December 2023) [1] |
Number of employees | 8,620 (2023) |
Website | curtisswright |
The Curtiss-Wright Corporation is a manufacturer and services provider headquartered in Davidson, North Carolina, with factories and operations in and outside the United States. [3] Created in 1929 from the consolidation of Curtiss, Wright, and various supplier companies, the company was immediately the country's largest aviation firm and built more than 142,000 aircraft engines for the U.S. military during World War II.
It no longer makes aircraft but does make many related components, particularly actuators, aircraft controls, valves, and it provides surface-treatment services. It supplies equipment to the commercial, industrial, defense, and energy markets. It makes parts for commercial and naval nuclear power systems, industrial vehicles, and oil- and gas-related machinery.
Curtiss-Wright formed on July 5, 1929, the result of a merger of 12 companies associated with Curtiss Aeroplane and Motor Company of Buffalo, New York, and Wright Aeronautical of Dayton, Ohio. [4] It was headquartered in Buffalo, New York. With $75 million in capital (equivalent to $1.33 billion in 2023), it became the largest aviation company in the United States.
Companies Merged [5] | Owner |
---|---|
Wright Aeronautical Corp | Hoyt |
Curtiss Aeroplane & Motor Co | Keys |
Curtiss Airports Corp. | Keys |
Curtiss Flying Service | Keys |
Curtiss Aeroplane Export Co. | Keys |
Curtiss-Caproni Corp. | Keys |
Curtiss-Robertson Airplane Mfg. Co. | Keys |
New York Air Terminals | Hoyt |
N.Y. & Suburban Airlines | Hoyt |
Keystone Aircraft Corp | Hoyt |
By September 1929, Curtiss-Wright had acquired the Moth Aircraft Corporation (which primarily built de Havilland Moth aircraft under licence) and the Travel Air Manufacturing Company. [6] [7]
There were three main divisions: the Curtiss-Wright Airplane Division, which manufactured airframes; the Wright Aeronautical Corporation, which produced aircraft engines; and the Curtiss-Wright Propeller Division, which manufactured propellers. After 1929, most engines produced by the new company were known as Wrights. Existing aircraft continued using the Curtiss name, while new designs used either the Curtiss or Curtiss-Wright name, depending on which location they were designed by, with a few exceptions.
Throughout the 1930s, Curtiss-Wright designed and built aircraft for military, commercial, and private markets but it was the Wright engine division and the longstanding relationship with the U.S. military that helped the company through the difficult years of the Great Depression. Guy Vaughan was appointed president in 1935. [8] In 1937, the company developed the P-36 fighter aircraft, resulting in the largest peacetime aircraft order ever given by the Army Air Corps. Curtiss-Wright also sold the P-36 abroad, where they were used in the early days of World War II.
During World War II, Curtiss-Wright produced 142,840 aircraft engines, 146,468 electric propellers, and 29,269 airplanes. [4] Curtiss-Wright employed 180,000 workers, and ranked second among United States corporations in the value of wartime production contracts, behind only General Motors. [9] [10]
Aircraft production included almost 14,000 P-40 fighters, made famous by their use by Claire Chennault's Flying Tigers in China, over 3,000 C-46 Commando transport aircraft, and later in the war, over 7,000 SB2C Helldivers. Its most visible success came with the P-40, variously known as the Tomahawk, Kittyhawk, and Warhawk, which were built between 1940 and 1944 at the main production facilities in Buffalo, New York. During the war, a second large plant was added at Buffalo, followed by new plants at Columbus, Ohio; St. Louis, Missouri; and Louisville, Kentucky. Engine and propeller production was at plants in New Jersey, Pennsylvania, and Ohio.
In May 1942, the U.S. government assigned Curtiss-Wright a defense production factory for wartime aircraft construction at Louisville, Kentucky, to produce C-76 Caravan cargo aircraft, which was constructed mostly of wood, a non-priority war material. After difficulties with the C-76, including a crash of a production model in mid-1943, as well as the realization that sufficient quantities of aluminum aircraft alloys would be available for war production, plans for large-scale C-76 production were rejected. [12]
The Louisville plant was converted to C-46 Commando production, delivering 438 Commandos to supplement the roughly 2,500 C-46s produced at Buffalo. The C-46 cargo aircraft was fitted with two powerful radial engines and could fly at higher altitudes than most other Allied aircraft. Consequently, it was used extensively in the China-Burma-India Theater.
From 1941 to 1943, the Curtiss Aeronautical plant in Lockland, Ohio, produced aircraft engines under wartime contract, destined for installation in U.S. Army Air Forces aircraft. [13] [14] Wright officials at Lockland insisted on high engine production levels, resulting in a significant percentage of engines that did not meet Army Air Forces (AAF) inspection standards. These defective engines were nevertheless approved by inspectors for shipment and installation in U.S. military aircraft. After investigation, it was later revealed that Wright company officials at Lockland had conspired with civilian technical advisers and Army inspection officers to approve substandard or defective aircraft engines for military use. [13] [14]
Curtiss-Wright failed to make the transition to design and production of jet aircraft, despite several attempts. During the war, the company expended only small amounts on aircraft research and development, instead concentrating on incremental improvements in conventional aircraft already in wartime production. This was especially true in the first two years of the war. Curtiss' failure to research and develop more advanced wing and airframe designs provided an opening for North American, Bell, Lockheed, Northrop, and other U.S. aircraft manufacturers to win contracts from the Army and Navy for more advanced aircraft designs.
The P-60, the firm's last prop-driven fighter design, was merely an extrapolation of its 1930s P-36 Hawk, offering no advantage over other designs already in service. With the rapid development of jet engine technology and near-supersonic flight, this technological lag resulted in Curtiss losing a number of critical postwar military aircraft orders. The final nail in the coffin was the choice of the Northrop F-89 Scorpion over the XF-87 Blackhawk. After the F-87 was cancelled in October 1948, Curtiss-Wright shut down its entire Aeroplane Division and sold the assets to North American Aviation. Curtiss-Wright continued to occasionally venture back into the realm of designing aircraft, such as the TDU-12/B Skydart target drone and the X-19 tilt-rotor, but none of these amounted to anything and by the early 1960s Curtiss-Wright was no longer an aircraft manufacturer.
While this marked Curtiss-Wright's departure from preeminence in the aviation industry, one notable spin-off involved Curtiss-Wright's flight research laboratory, founded in 1943 near the main plant at the Buffalo airport. During divestiture of the airframe division, the lab was given to Cornell University along with a cash gift to finish the construction of a transonic wind tunnel. Cornell Aeronautical Labs, or CAL as it was known, was eventually spun off from the university as a private company, Calspan Corporation, which has been responsible for numerous innovations in flight and safety research.
After the government gave the development of the Whittle jet engine to GE, the company concentrated on reciprocating engines and propeller production for military transport and civilian airliners. With the twilight of the big piston aircraft engine, Curtiss-Wright needed a new design direction, and in 1950, Curtiss-Wright licensed the Sapphire jet engine from Armstrong Siddeley in the U.K and manufactured it as the Wright J65. It powered models of the Martin B-57, and several U.S. fighter aircraft. Subsequent derivative engines were late and did not find substantial markets.
Curtiss-Wright briefly licensed rights to the Wankel rotary engine from NSU in 1958 as a possible aircraft power plant. For this project, Curtiss-Wright relied on the design leadership of NSU-Wankel engineer Max Bentele.
In 1954, United Airlines bought four Curtiss-Wright flight simulators at a cost of $3 million. These simulators were unlike earlier ones produced in the late 1940s for airliners but now included visuals, sound, and movement. They were the first of today's modern flight simulators for commercial aircraft. [15]
In 1956, financially strapped automaker Studebaker-Packard Corporation entered into a management agreement with Curtiss-Wright to allow the nation's fifth-largest automobile manufacturer to avoid insolvency. The relationship lasted until 1959 at which time Curtiss-Wright withdrew from the agreement. The shift of civilian aircraft to jets left the company with little of its old business, and during the 1960s it shifted to components for aircraft and other types of equipment, such as nuclear submarines, a business that continues today.
In 2002, Curtiss-Wright acquired Penny & Giles, a supplier of black boxes and sensing devices (Hybrid linear, hybrid rotary and VRVT sensors). [16]
In 2003, Curtiss-Wright acquired Systran Corporation, a supplier of specialized data communications products for real-time systems, primarily for the aerospace and defense, industrial automation and medical image markets. [17] The acquisition also reintroduced Curtiss-Wright to Dayton, Ohio.
In 2010, Curtiss-Wright acquired Hybricon Corporation for $19 million in cash. Hybricon is a supplier of electronic packaging for the aerospace, defense, and commercial markets, and provides electronic subsystem integration. [18]
In 2011, Curtiss-Wright acquired Ireland-based Acra Control for $61 million in cash. Acra Control is a supplier of data acquisition systems and networks, data recorders, and telemetry ground stations for both defense and commercial aerospace markets. [19]
At the beginning of 2013, Curtiss-Wright acquired Exlar Corporation for $85 million in cash. Exlar, a private company, is a designer and manufacturer of highly engineered electric actuators used in motion control solutions in industrial and military markets. The acquired business will operate within Curtiss-Wright's Motion Control segment. [20] In October 2013, Curtiss-Wright completed the acquisition of the Parvus Corporation, a business unit of Eurotech S.p.A., for $38 million. Parvus is a leading designer and manufacturer of rugged small form factor computers and communications subsystems for the aerospace, defense, homeland security, and industrial markets. [21]
Curtiss-Wright acquired military communications equipment supplier Pacific Star Communications for $400 million, on November 2, 2020. [22] [23]
Curtiss-Wright Corporation finalized the acquisition of 901D Holdings, LLC (901D) for $132 million in cash. Designing and manufacturing electronic systems, subsystems, and shipboard enclosures, 901D is a contributor to major U.S. Navy shipbuilding programs including both nuclear and non-nuclear powered vessels. [24]
In February 2020, Curtiss-Wright Corporation (NYSE: CW) completed the acquisition of Dyna-Flo Control Valve Services Ltd. ("Dyna-Flo") for $81 million in cash. [25]
In January 2022, Curtiss-Wright Corporation (CW) announced an agreement to acquire assets from Safran Aerosystems Arresting Company (SAA), a move aimed at expanding its presence in the military aircraft emergency arresting systems sector. SAA, a subsidiary of Safran Aerosystems, specializes in designing and manufacturing aircraft emergency arresting systems and will operate within Curtiss-Wright's Naval & Power segment post-acquisition. The completion of the acquisition, valued at $240 million, is contingent on regulatory approval and other closing conditions, with expectations for finalization in the third quarter of 2022. The strategic acquisition of SAA is part of Curtiss-Wright's efforts to enhance growth prospects and diversify its product portfolio. With an anticipated positive impact on CW's earnings, the $240 million transaction is projected to contribute to a robust free cash flow conversion rate exceeding 100%, signaling a favorable liquidity position for the company in the future. [26]
In November 2022, CW has finalized the acquisition of Keronite Group Limited, involving a cash transaction of $35 million. This strategic move is expected to enhance Curtiss-Wright's capabilities in Plasma Electrolytic Oxidation ("PEO") surface treatment services. Operating within Curtiss-Wright's Aerospace & Industrial segment, the acquisition is projected to have a neutral impact on the company's earnings in the initial year. It is anticipated to yield a 100% free cash flow conversion rate, underscoring the robust liquidity position. This strengthened financial position can be leveraged for profitable and revenue-generating strategies. [27]
Model name | First flight | Number built | Type |
---|---|---|---|
Curtiss Bleeker SX-5-1 Helicopter | 1926 | 1 | Experimental single engine helicopter |
Curtiss Teal | 2 | Single engine monoplane flying boat | |
Curtiss-Wright Junior | 1930 | ~270 | Single engine monoplane sport airplane |
Curtiss-Wright CW-3 Duckling | 1931 | 3 | Single engine monoplane flying boat |
Curtiss F9C Sparrowhawk | 1931 | 7+ | Single engine biplane parasite fighter |
Curtiss A-8 | 1931 | 13 | Single engine monoplane attack airplane |
Curtiss-Wright CW-15 | 1931 | 15 | Single engine cabin monoplane |
Curtiss-Wright CW-16 | 22 or 23 | Single engine biplane trainer | |
Curtiss-Wright CW-17 | N/A | 0 | Single engine biplane |
Curtiss O-40 Raven | 1932 | 5 | Single engine biplane observation airplane |
Curtiss F11C Goshawk | 1932 | 30 | Single engine biplane fighter |
Curtiss XP-31 Swift | 1932 | 1 | Prototype single engine monoplane fighter |
Curtiss YA-10 Shrike | 1932 | 2 | Prototype single engine monoplane attack airplane |
Curtiss T-32 Condor II | 1933 | 45 | Twin engine biplane airliner |
Curtiss BF2C Goshawk | 166 | Single engine biplane fighter | |
Curtiss-Wright CW-6 | 8 | Single engine cabin monoplane | |
Curtiss-Wright CW-12 | 40 or 41 | Single engine biplane trainer | |
Curtiss-Wright CW-14 Osprey | 38+ | Single engine biplane | |
Curtiss-Wright CW-19 | ~43 | Single engine monoplane attack airplane | |
Curtiss XF13C | 1934 | 3 | Prototype single engine monoplane fighter |
Curtiss SOC Seagull | 1934 | 258 | Single engine biplane scout floatplane |
Curtiss-Wright CA-1 | 1935 | 3 | Single engine biplane flying boat |
Curtiss P-36 Hawk | 1935 | 1115 | Single engine monoplane fighter |
Curtiss A-12 Shrike | 46 | Single engine monoplane attack airplane | |
Curtiss XA-14 | 1935 | 1 | Prototype twin engine monoplane attack airplane |
Curtiss A-18 Shrike | 1935 | 13 | Twin engine attack monoplane airplane |
Curtiss SBC Helldiver | 1935 | 257 | Single engine biplane dive bomber |
Curtiss P-37 | 1937 | 14 | Prototype single engine monoplane fighter |
Curtiss-Wright CW-21 | 1938 | 62 | Single engine monoplane fighter |
Curtiss P-40 Warhawk | 1938 | 13738 | Single engine monoplane fighter |
Curtiss XP-42 | 1939 | 1 | Prototype single engine monoplane fighter |
Curtiss SO3C Seamew | 1939 | 795 | Single engine monoplane scout floatplane |
Curtiss-Wright CW-22 | 1940 | ~442 | Single engine monoplane trainer |
Curtiss-Wright CW-23 | 1 | Prototype single engine monoplane trainer | |
Curtiss C-46 Commando | 1940 | 3181 | Twin engine monoplane cargo airplane |
Curtiss O-52 Owl | 1940 | 203 | Single engine monoplane observation airplane |
Curtiss SB2C Helldiver | 1940 | 7140 | Single engine monoplane dive bomber |
Curtiss AT-9 | 1941 | 792 | Twin engine monoplane trainer |
Curtiss XP-46 | 1941 | 2 | Prototype single engine monoplane fighter |
Curtiss P-60 | 1941 | 4 | Prototype single engine monoplane fighter |
Curtiss-Wright C-76 Caravan | 1943 | 25 | Twin engine monoplane cargo airplane |
Curtiss-Wright XP-55 Ascender | 1943 | 3 | Prototype single engine monoplane fighter |
Curtiss XP-62 | 1943 | 1 | Prototype single engine monoplane fighter |
Curtiss SC Seahawk | 1944 | 577 | Single engine monoplane scout floatplane |
Curtiss XF14C | 1944 | 1 | Prototype single engine monoplane fighter |
Curtiss XBTC | 1945 | 2 | Prototype single engine monoplane torpedo bomber |
Curtiss XF15C | 1945 | 3 | Prototype mixed propulsion monoplane fighter |
Curtiss XBT2C | 1945 | 9 | Prototype single engine monoplane torpedo bomber |
Curtiss-Wright XF-87 Blackhawk | 1948 | 2 | Four engine jet monoplane fighter |
Curtiss-Wright X-19 | 1963 | 2 | Experimental twin engine tiltrotor airplane |
Curtiss-Wright VZ-7 | 2 | Experimental single engine helicopter | |
Curtiss-Wright CW-2 | N/A | 0 | Unbuilt two-seat monoplane |
Curtiss-Wright CW-5 | N/A | 0 | Unbuilt cargo airplane |
Curtiss-Wright CW-18 | N/A | 0 | Unbuilt two-seat trainer |
Curtiss XP-53 | N/A | 2 | Prototype single engine monoplane fighter |
Curtiss XP-71 | N/A | 0 | Unbuilt twin engine monoplane heavy fighter |
Curtiss XSB3C | N/A | 0 | Unbuilt single engine monoplane dive bomber |
Curtiss KD2C Skeet | 1947 | Target drone | |
Curtiss CW-32 | N/A | 0 | Unbuilt four-engine transport [28] [ failed verification ] |
As well as manufacturing engines, a range of electrically actuated constant speed three- and four-bladed propellers were manufactured under the name Curtiss Electric. [29]
Albert Kahn Associates designed several industrial buildings for the Curtiss Wright Corporation, [30] including plants in Beaver, PA; Buffalo, NY; Caldwell, NJ; Columbus, OH; Indianapolis, IN; Kenmore, NY; Louisville, KY and St. Louis, MO. Albert Kahn's personal working library, the Albert Kahn Library Collection, is housed at Lawrence Technological University in Southfield, Michigan.
Beechcraft is an American brand of civil aviation and military aircraft owned by Textron Aviation since 2014, headquartered in Wichita, Kansas. Originally, it was a brand of Beech Aircraft Corporation, an American manufacturer of general aviation, commercial, and military aircraft, ranging from light single-engined aircraft to twin-engined turboprop transports, business jets, and military trainers. Beech later became a division of Raytheon and then Hawker Beechcraft before a bankruptcy sale turned its assets over to Textron. It remains a brand of Textron Aviation.
An aerospace manufacturer is a company or individual involved in the various aspects of designing, building, testing, selling, and maintaining aircraft, aircraft parts, missiles, rockets, or spacecraft. Aerospace is a high technology industry.
Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial, and military applications. Aerospace engineering consists of aeronautics and astronautics. Aerospace organizations research, design, manufacture, operate, maintain, and repair both aircraft and spacecraft.
The Bell Aircraft Corporation was an American aircraft manufacturer, a builder of several types of fighter aircraft for World War II but most famous for the Bell X-1, the first supersonic aircraft, and for the development and production of many important civilian and military helicopters. Bell also developed the Reaction Control System for the Mercury Spacecraft, North American X-15, and Bell Rocket Belt. The company was purchased in 1960 by Textron, and lives on as Bell Textron.
Curtiss Aeroplane and Motor Company (1909–1929) was an American aircraft manufacturer originally founded by Glenn Hammond Curtiss and Augustus Moore Herring in Hammondsport, New York. After significant commercial success in its first decades, it merged with the Wright Aeronautical to form Curtiss-Wright Corporation.
Wright Aeronautical (1919–1929) was an American aircraft manufacturer headquartered in Paterson, New Jersey. It was the successor corporation to Wright-Martin. It built aircraft and was a supplier of aircraft engines to other builders in the golden age of aviation. Wright engines were used by Amelia Earhart and Charles Lindbergh. In 1929, the company merged with Curtiss Aeroplane and Motor Corporation to form Curtiss-Wright.
The Goodrich Corporation, formerly the B.F. Goodrich Company, was an American manufacturing company based in Charlotte, North Carolina. Founded in Akron, Ohio in 1870 as Goodrich, Tew & Co. by Dr. Benjamin Franklin Goodrich, the company name was changed to the "B.F. Goodrich Company" in 1880, to BFGoodrich in the 1980s, and to "Goodrich Corporation" in 2001. Originally a rubber manufacturing company known for automobile tires, the company diversified its manufacturing businesses throughout the twentieth century and sold off its tire business in 1986 to focus on its other businesses, such as aerospace and chemical manufacturing. The BFGoodrich brand name continues to be used by Michelin, who acquired the tire manufacturing business in 1988. Following the acquisition by United Technologies in 2012, Goodrich became a part of UTC Aerospace Systems.
General Electric Company, doing business as GE Aerospace, is an American aircraft engine supplier that is headquartered in Evendale, Ohio, outside Cincinnati. It is the legal successor to the original General Electric Company founded in 1892, which split into three separate companies between November 2021 and April 2024, adopting the trade name GE Aerospace after divesting its healthcare and energy divisions.
Nash-Kelvinator Corporation was the result of a merger in 1937 between Nash Motors and Kelvinator Appliance Company. The union of these two companies was brought about as a result of a condition made by George W. Mason prior to his appointment as CEO of Nash. The company manufactured cars and refrigerators as well as aeronautic components and helicopters during World War II. In 1954, the company merged with Hudson Motors to form American Motors Corporation (AMC).
Hamilton Standard was an American aircraft propeller parts supplier. It was formed in 1929 when United Aircraft and Transport Corporation consolidated Hamilton Aero Manufacturing and Standard Steel Propeller into the Hamilton Standard Propeller Corporation. Other members of United Aircraft included Boeing, United Airlines, Sikorsky and Pratt & Whitney. At the time, Hamilton was the largest manufacturer of aircraft propellers in the world.
Safran S.A. is a French multinational aerospace, defence and security corporation headquartered in Paris. It designs, develops and manufactures both commercial and military aircraft engines; launch vehicle, spacecraft and missile propulsion systems; as well as various other aerospace and military equipment and devices. The company was founded in 2005 through a merger between the aerospace engine manufacturer SNECMA and the electronics specialist SAGEM. Safran's subsequent acquisition of Zodiac Aerospace in 2018 significantly expanded its aeronautical activities.
Moog Inc. is an American-based designer and manufacturer of electric, electro-hydraulic and hydraulic motion, controls and systems for applications in aerospace, defense, industrial and medical devices. The company operates under four segments: aircraft controls, space and defense controls, industrial controls, and components. Moog is headquartered in Elma, New York, and has sales, engineering, and manufacturing facilities in twenty-six countries.
Calspan Corporation is a science and technology company founded in 1943 as part of the Research Laboratory of the Curtiss-Wright Airplane Division at Buffalo, New York. Calspan consists of four primary operating units: Flight Research, Transportation Research, Aerospace Sciences Transonic Wind Tunnel, and Crash Investigations. The company's main facility is in Cheektowaga, New York, while it has other facilities such as the Flight Research Center in Niagara Falls, New York, and remote flight test operations at Edwards Air Force Base, California, and Patuxent River, Maryland. Calspan also has thirteen field offices throughout the Eastern United States which perform accident investigations on behalf of the United States Department of Transportation. Calspan was acquired by TransDigm Group in 2023.
The Curtiss-Wright C-76 Caravan was an American all-wood military transport aircraft. The C-76 was intended as a substitute standard aircraft in the event of expected wartime shortages of light alloys. However, both prototype and production aircraft failed several critical flight and static tests, and after U.S. aluminum production proved sufficient for wartime defense requirements, orders for the C-76 were cancelled and it did not enter production. Although it did not go into its main production, 25 pre-production and prototype aircraft of various types were constructed during development. The factory where it might have been produced made more C-46 Commandoes for which the C-76 would have been a substitute.
Hybricon Corporation is a provider of systems packaging serving the military, aerospace, homeland security, medical and high-end Industrial markets and develops embedded computing systems using OpenVPX, VPX, VXS, VMEbus, VME64X, CompactPCI, rugged MicroTCA, and custom bus structures.
TransDigm Group Incorporated is an American publicly traded aerospace manufacturing company headquartered in Cleveland, Ohio. TransDigm develops and manufactures engineered aerospace components. It was founded in 1993, when four industrial aerospace companies were combined by a private equity firm in a leveraged buyout. TransDigm expanded the range of aerospace components it manufactures through acquisitions over the years. It filed an initial public offering on the New York Stock Exchange in 2006.
Dresser-Rand is an American engineering and manufacturing company owned by Siemens Energy. The company designs, manufactures, and services equipment used in the extraction of petroleum and natural gas. The company was formed in 1986 as a joint venture of Dresser Industries and Ingersoll Rand.
The Menasco Manufacturing Company was an American aircraft engine and component manufacturer.
The Lindbergh Boom (1927–1929) is a period of rapid interest in aviation following the awarding of the Orteig Prize to Charles Lindbergh for his 1927 non-stop solo transatlantic flight in the Spirit of St. Louis. The Lindbergh Boom occurred during the interwar period between World War I and World War II, where aviation development was fueled by commercial interests rather than wartime necessity. During this period, dozens of companies were formed to create airlines, and aircraft for a new age in aviation. Many of the fledgling companies funded by stock went under as quick as they started as the stock that capitalized them plummeted in value following the Wall Street Crash of 1929. The Great Depression dried up the market for new aircraft, causing many aircraft companies to go into bankruptcy or get consolidated by larger entities. Air racing, record attempts, and barnstorming remained popular, as aviators tried to recapture the prizes and publicity of Lindbergh's Transatlantic flight.
RTX Corporation, formerly Raytheon Technologies Corporation, is an American multinational aerospace and defense conglomerate headquartered in Arlington, Virginia. It is one of the largest aerospace and defense manufacturers in the world by revenue and market capitalization, as well as one of the largest providers of intelligence services. In 2023, the company's seat in Forbes Global 2000 was 79. RTX manufactures aircraft engines, avionics, aerostructures, cybersecurity solutions, guided missiles, air defense systems, satellites, and drones. The company is a large military contractor, getting much of its revenue from the U.S. government.