MiR-122

Last updated

mir-122 microRNA precursor
MiR-122 structure and sequence conservation.jpg
Identifiers
Symbolmir-122
Rfam RF00684
miRBase MI0000442
miRBase family MIPF0000095
Other data
RNA type Gene; miRNA
Domain(s) Eukaryota
GO GO:0035195
SO SO:0001244
PDB structures PDBe

miR-122 is a miRNA that is conserved among vertebrate species. miR-122 is not present in invertebrates, and no close paralogs of miR-122 have been detected. [1] miR-122 is highly expressed in the liver, where it has been implicated as a regulator of fatty-acid metabolism in mouse studies. Reduced miR-122 levels are associated with hepatocellular carcinoma. miR-122 also plays an important positive role in the regulation of hepatitis C virus replication.

Contents

Expression and regulation

miR-122 was originally identified by cloning of tissue-specific microRNAs in mouse. [2] The liver-specific expression of miR-122 is conserved in zebrafish. [3] miR-122 expression increases during embryogenesis until it constitutes 72% of total miRNA in adult human liver, making it one of the most highly expressed miRNAs in any tissue. [4] In humans, miR-122 is encoded at a single genomic locus in chromosome 18. The primary miR-122 transcript (pri-miR-122) is a long non-coding RNA. Transcription is regulated by HNF4α. [5] The miR-122 hairpin precursor consensus shown here is predicted based on base pairing and cross-species conservation. The mature sequence is excised from the 5' arm of the hairpin. [2] [6]

There is evidence that miR-122 is regulated by Rev-ErbA alpha which is involved in circadian gene expression, suggesting that miR-122 is a circadian metabolic regulator. miR-122 regulates the expression of several mRNA molecules that are important in the circadian cycle, such as PPARβ/δ. [7] Mature miR-122 is subject to modification by the poly(A) polymerase GLD-2, which adds a single adenosine to the miRNA 3' end. This results in an increase in miR-122 stability. [8]

Targets

miR-122 regulates the synthesis of the protein CAT-1 by binding to sites in the mRNA 3'UTR such that translation is repressed and the mRNA is targeted to P bodies. This repression can be relieved by the protein HuR, which is released from the nucleus under conditions of cell stress and binds to the CAT-1 3'UTR. The HuR interaction leads to release of the mRNA from the P bodies and resumption of active translation. [9]

A number of other miR-122 targets, including CD320, AldoA and BCKDK, have been identified by microarray analysis of changes in mRNA expression in the liver of mice treated with miR-122 inhibitors. [10] [11] [12] The overall effect of miR-122 inhibition is to reduce the plasma cholesterol level, although the pathways involved in this regulation have not been fully elucidated. miR-122 also regulates systemic iron homeostasis via the target mRNAs Hjv and Hfe. [13] miR-122 inhibition in mice or primates does not result in any detectable liver toxicity. [14]

Role in cancer

miR-122 levels are frequently reduced in hepatocellular carcinoma (HCC) compared to normal liver, and low miR-122 levels correlate with poor prognosis. [15] [16] Overexpression of miR-122 reduces tumorigenic properties in HCC cell lines, suggesting that it functions as a tumor suppressor gene, and increases the response of cells to the chemotherapeutic drugs sorafenib and doxorubicin. [17] [18] Several miR-122 target genes have been implicated in tumorigenesis, including ADAM10, IGF1R, CCNG1 and ADAM17. [17] [18] [19]

Innate Immunity

Recent studies demonstrated that miR-122 may directly regulate different aspects of the interferons (IFNs) signaling pathway [20] [21] to enhanced induction of anti-viral genes and inhibition of various virus. [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] Moreover, miR-122 have been shown to target various genes, [31] [32] [29] [33] [28] resulting in enhancement of IFN signaling and subsequent antiviral innate immunity. [31] [27] Interferons (IFNs, includes type I and III interferon) treatment leads to a significant reduction in the expression of the liver-specific miR-122. [21] [34] [35] [36] [28] HepG2 cells with overexpressed microRNA-122 mount an effective antiviral interferon response and innate immune response to hepatitis C virus (HCV), other RNA viruses and viral mimetics (e.g. poly(I:C)). [22]

Regulation of HCV

Recent studies have shown that replication of hepatitis C virus (HCV) is dependent on miR-122 expression. [37] miR-122 regulates HCV by binding directly to two adjacent sites close to the 5' end of HCV RNA. [38] Although these experiments were conducted using genotype 1a and 1b HCV RNA, the miR-122 binding sites are highly conserved across different genotypes, and miR-122 is also required for replication of infectious type 2a HCV. [39] As miRNAs generally function to repress gene expression by binding to 3'UTR sites, this positive regulation of viral replication via a 5'UTR represents a novel function for miR-122. The mechanism of regulation is not yet clear. miR-122 stimulates translation of HCV RNA, but not to a sufficient extent to explain its effects on viral replication, indicating that a second stage of the viral replication cycle must also be regulated. [40] [41] HCV RNA synthesis is not affected by miR-122, suggesting that regulation of other processes such as RNA stability may occur. [42] [43] The extent to which the miRNA-induced silencing complex (miRISC) is involved in this regulation has not been fully determined. The Argonaute proteins (Ago1–4), which are essential for miRNA-directed repression, appear to be necessary for miR-122 to regulate HCV, [44] although miR-122 overexpression may overcome this requirement. [45] The crystal structure of Ago2:miR-122 bound to the miR-122 binding site at the 5'-end of the HCV genome, in combination with functional experiments, suggests that the viral RNA has evolved to maximize protection from cytoplasmic exoribonucleases by altering the molecular behavior of Ago2. [46] Another miRISC component, the DEAD-box RNA helicase DDX6, does not play a role in miR-122-facilitated HCV replication. [47]

The existing HCV therapy of PEG-IFNα plus ribavirin is poorly tolerated and frequently ineffective, [48] [26] so there is an urgent need for new drugs, and miR-122 inhibitors are an attractive possibility. The association between low miR-122 levels and hepatocellular carcinoma suggests that caution will be necessary when testing miR-122 inhibitors, and that long-term treatment might be undesirable. However, miR-122 is a promising target as it can be very selectively and effectively inhibited with antisense oligonucleotides, and as it is a conserved host factor it is hoped that the virus would not be able to acquire resistance mutations to an anti-miR-122 therapeutic. Moreover, engineering HepG2 cells to express miR-122 (HepG2-HFL cell, HepG2 cells expressing miR-122) mount an effective antiviral interferon-lambda (IFNλ) based innate immune response to hepatitis C virus (HCV) infection. [22] [25] HepG2 cells (stably expressing miR-122) produced a more robust IFN Response (type I and type III interferons) when challenged with other RNA viruses [ IAV-ΔNS1 and SeV ] and viral mimetics than Huh-7 and Huh-7.5 cells. HCV Induces an IFN-λ (IL28 and IL29), ISG, and Cytokine Response in these HepG2 cells with stably expressing miR-122. [22] [23] [24] [31] [27]

Inhibitor miravirsen

As of 2017, Santaris Pharma was developing miravirsen, a locked nucleic acid-based antisense oligonucleotide that inhibits miR-122, as a potential treatment for HepC. [49]

Use as a biomarker

miR-122 has recently been explored as a potential biomarker for various hepatic conditions. A change in levels of miR-122 in the blood has been confirmed as an indicator for viral-, alcohol- and chemical-induced liver injury [50] [51] [52] as well as Transplant rejection after Liver transplantation. [53] [54] This change is noted before increased amino-transferase activity, making it an early indicator of liver disease and hepatocellular injury of liver grafts prior to liver transplantation. [53] [55]

There is a great deal of research into the use of miR-122 as a biomarker for hepatitis C. While some studies dispute its efficacy for diagnosing Hep C, [56] other research indicates that it may be useful in diagnosing specific forms of hepatitis. [57] In addition, decreased levels of miR-122 in liver biopsies have been linked to a strain of hepatitis C that is resistant to interferon therapy. [26]

miR-122 has also been suggested as a biomarker for hepatectomy-induced liver injury in patients with hepatocellular carcinoma. [58]

It is important to note that detection of miR-122 and other microRNAs in Body fluid like blood can be interfered by heparin contaminated. The commonly used anticoagulant heparin profoundly inhibits the by reverse transcription polymerase chain reaction (RT-PCR) used for microRNA quantification. [59] [60]

Related Research Articles

<span class="mw-page-title-main">Hepatitis</span> Inflammation of the liver

Hepatitis is inflammation of the liver tissue. Some people or animals with hepatitis have no symptoms, whereas others develop yellow discoloration of the skin and whites of the eyes (jaundice), poor appetite, vomiting, tiredness, abdominal pain, and diarrhea. Hepatitis is acute if it resolves within six months, and chronic if it lasts longer than six months. Acute hepatitis can resolve on its own, progress to chronic hepatitis, or (rarely) result in acute liver failure. Chronic hepatitis may progress to scarring of the liver (cirrhosis), liver failure, and liver cancer.

<span class="mw-page-title-main">Hepatitis C</span> Human viral infection

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver; it is a type of viral hepatitis. During the initial infection period, people often have mild or no symptoms. Early symptoms can include fever, dark urine, abdominal pain, and yellow tinged skin. The virus persists in the liver, becoming chronic, in about 70% of those initially infected. Early on, chronic infection typically has no symptoms. Over many years however, it often leads to liver disease and occasionally cirrhosis. In some cases, those with cirrhosis will develop serious complications such as liver failure, liver cancer, or dilated blood vessels in the esophagus and stomach.

<span class="mw-page-title-main">Hepatocellular carcinoma</span> Medical condition

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. HCC is the third leading cause of cancer-related deaths worldwide.

<span class="mw-page-title-main">Viral hepatitis</span> Liver inflammation from a viral infection

Viral hepatitis is liver inflammation due to a viral infection. It may present in acute form as a recent infection with relatively rapid onset, or in chronic form, typically progressing from a long-lasting asymptomatic condition up to a decompensated hepatic disease and hepatocellular carcinoma (HCC).

<span class="mw-page-title-main">Hepatitis C virus</span> Species of virus

The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.

Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV) co-infection is a multi-faceted, chronic condition that significantly impacts public health. According to the World Health Organization (WHO), 2 to 15% of those infected with HIV are also affected by HCV, increasing their risk of morbidity and mortality due to accelerated liver disease. The burden of co-infection is especially high in certain high-risk groups, such as intravenous drug users and men who have sex with men. These individuals who are HIV-positive are commonly co-infected with HCV due to shared routes of transmission including, but not limited to, exposure to HIV-positive blood, sexual intercourse, and passage of the Hepatitis C virus from mother to infant during childbirth.

<span class="mw-page-title-main">CXCL10</span> Mammalian protein found in Homo sapiens

C-X-C motif chemokine ligand 10 (CXCL10) also known as Interferon gamma-induced protein 10 (IP-10) or small-inducible cytokine B10 is an 8.7 kDa protein that in humans is encoded by the CXCL10 gene. C-X-C motif chemokine 10 is a small cytokine belonging to the CXC chemokine family.

mir-196 microRNA precursor family

miR-196 is a non-coding RNA called a microRNA that has been shown to be expressed in humans and mice. miR-196 appears to be a vertebrate specific microRNA and has now been predicted or experimentally confirmed in a wide range of vertebrate species. In many species the miRNA appears to be expressed from intergenic regions in HOX gene clusters. The hairpin precursors are predicted based on base pairing and cross-species conservation—their extents are not known. In this case the mature sequence is excised from the 5' arm of the hairpin.

<span class="mw-page-title-main">Liver cancer</span> Medical condition

Liver cancer is cancer that starts in the liver. Liver cancer can be primary or secondary. Liver metastasis is more common than that which starts in the liver. Instances of liver cancer are increasing globally.

<span class="mw-page-title-main">Hepatitis B</span> Human viral infection

Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV) that affects the liver; it is a type of viral hepatitis. It can cause both acute and chronic infection.

<span class="mw-page-title-main">Liver kidney microsomal type 1 antibody</span>

Liver kidney microsomal type 1 antibody (anti-LKM1) is an autoantibody associated with autoimmune hepatitis (AIH). Specifically, its presence in AIH defines type 2 AIH, although it has been proposed that anti-liver cytosol type 1 autoantibody without detectable anti-LKM1 can be seen in type 2 AIH. It is one of the several subtypes of anti–liver-kidney microsome antibodies that are known. The frequent association of anti-LKM-1 antibodies and hepatitis C virus (HCV) infections and the probable existence of an infection-associated autoimmune form of anti-LKM-1-associated hepatitis, requiring a different therapeutic strategy, necessitate the exact determination of anti-LKM-1 specificities.

<span class="mw-page-title-main">HBx</span>

HBx is a hepatitis B viral protein. It is 154 amino acids long and interferes with transcription, signal transduction, cell cycle progress, protein degradation, apoptosis and chromosomal stability in the host. It forms a heterodimeric complex with its cellular target protein, and this interaction dysregulates centrosome dynamics and mitotic spindle formation. It interacts with DDB1 redirecting the ubiquitin ligase activity of the CUL4-DDB1 E3 complexes, which are intimately involved in the intracellular regulation of DNA replication and repair, transcription and signal transduction.

<i>Hepatitis B virus</i> Species of the genus Orthohepadnavirus

Hepatitis B virus (HBV) is a partially double-stranded DNA virus, a species of the genus Orthohepadnavirus and a member of the Hepadnaviridae family of viruses. This virus causes the disease hepatitis B.

mir-221 microRNA

In molecular biology, mir-221 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

<span class="mw-page-title-main">Interferon Lambda 3</span> Protein-coding gene in the species Homo sapiens

Interferon lambda 3 encodes the IFNL3 protein. IFNL3 was formerly named IL28B, but the Human Genome Organization Gene Nomenclature Committee renamed this gene in 2013 while assigning a name to the then newly discovered IFNL4 gene. Together with IFNL1 and IFNL2, these genes lie in a cluster on chromosomal region 19q13. IFNL3 shares ~96% amino-acid identity with IFNL2, ~80% identity with IFNL1 and ~30% identity with IFNL4.

In molecular biology mir-198 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

Infections of the hepatitis C virus (HCV) in children and pregnant women are less understood than those in other adults. Worldwide, the prevalence of HCV infection in pregnant women and children has been estimated to 1-8% and 0.05-5% respectively. The vertical transmission rate has been estimated to be 3-5% and there is a high rate of spontaneous clearance (25-50%) in the children. Higher rates have been reported for both vertical transmission. and prevalence in children (15%).

Christian Bréchot is a French physician and scientist who has been serving as president of the Global Virus Network (GVN) since 2017. He previously served as president of the Institut Pasteur from 2013 until 2017 and as chief executive officer of the French National Institute for Health and Medical Research (INSERM) from 2001 to 2007.

<span class="mw-page-title-main">Interferon Lambda 4</span> Protein-coding gene in the species Homo sapiens

Interferon lambda 4 is one of the most recently discovered human genes and the newest addition to the interferon lambda protein family. This gene encodes the IFNL4 protein, which is involved in immune response to viral infection.

<span class="mw-page-title-main">Bulevirtide</span> Antiviral medication

Bulevirtide, sold under the brand name Hepcludex, is an antiviral medication for the treatment of chronic hepatitis D.

References

  1. "miRBase".
  2. 1 2 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (April 2002). "Identification of tissue-specific microRNAs from mouse". Current Biology. 12 (9): 735–739. Bibcode:2002CBio...12..735L. doi: 10.1016/S0960-9822(02)00809-6 . PMID   12007417. S2CID   7901788.
  3. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. (July 2005). "MicroRNA expression in zebrafish embryonic development". Science. 309 (5732): 310–311. Bibcode:2005Sci...309..310W. doi:10.1126/science.1114519. PMID   15919954. S2CID   38939571.
  4. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. (July 2004). "miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1". RNA Biology. 1 (2): 106–113. doi: 10.4161/rna.1.2.1066 . PMID   17179747. S2CID   2956276.
  5. Li ZY, Xi Y, Zhu WN, Zeng C, Zhang ZQ, Guo ZC, et al. (September 2011). "Positive regulation of hepatic miR-122 expression by HNF4α". Journal of Hepatology. 55 (3): 602–611. doi:10.1016/j.jhep.2010.12.023. PMID   21241755.
  6. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004). "Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation". Genome Biology. 5 (3): R13. doi: 10.1186/gb-2004-5-3-r13 . PMC   395763 . PMID   15003116.
  7. Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. (June 2009). "Integration of microRNA miR-122 in hepatic circadian gene expression". Genes & Development. 23 (11): 1313–1326. doi:10.1101/gad.1781009. PMC   2701584 . PMID   19487572.
  8. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T, Suzuki T (February 2009). "Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2". Genes & Development. 23 (4): 433–438. doi:10.1101/gad.1761509. PMC   2648654 . PMID   19240131.
  9. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (June 2006). "Relief of microRNA-mediated translational repression in human cells subjected to stress". Cell. 125 (6): 1111–1124. doi: 10.1016/j.cell.2006.04.031 . PMID   16777601. S2CID   18353167.
  10. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (December 2005). "Silencing of microRNAs in vivo with 'antagomirs'". Nature. 438 (7068): 685–689. Bibcode:2005Natur.438..685K. doi:10.1038/nature04303. PMID   16258535. S2CID   4414240.
  11. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. (February 2006). "miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting". Cell Metabolism. 3 (2): 87–98. doi: 10.1016/j.cmet.2006.01.005 . PMID   16459310.
  12. Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al. (March 2008). "Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver". Nucleic Acids Research. 36 (4): 1153–1162. doi:10.1093/nar/gkm1113. PMC   2275095 . PMID   18158304.
  13. Castoldi M, Vujic Spasic M, Altamura S, Elmén J, Lindow M, Kiss J, et al. (April 2011). "The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice". The Journal of Clinical Investigation. 121 (4): 1386–1396. doi:10.1172/JCI44883. PMC   3069782 . PMID   21364282.
  14. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. (April 2008). "LNA-mediated microRNA silencing in non-human primates". Nature. 452 (7189): 896–899. Bibcode:2008Natur.452..896E. doi:10.1038/nature06783. PMID   18368051. S2CID   4308734.
  15. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, et al. (October 2006). "Downregulation of miR-122 in the rodent and human hepatocellular carcinomas". Journal of Cellular Biochemistry. 99 (3): 671–678. doi:10.1002/jcb.20982. PMC   3033198 . PMID   16924677.
  16. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS (October 2009). "Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties". Oncogene. 28 (40): 3526–3536. doi:10.1038/onc.2009.211. PMC   3492882 . PMID   19617899.
  17. 1 2 Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al. (November 2009). "MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib". The Journal of Biological Chemistry. 284 (46): 32015–32027. doi: 10.1074/jbc.M109.016774 . PMC   2797273 . PMID   19726678.
  18. 1 2 Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. (July 2009). "MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells". Cancer Research. 69 (14): 5761–5767. doi:10.1158/0008-5472.CAN-08-4797. PMID   19584283. S2CID   15410585.
  19. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, et al. (May 2009). "MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma". Hepatology. 49 (5): 1571–1582. doi: 10.1002/hep.22806 . PMID   19296470. S2CID   12797340.
  20. Wilson JA, Sagan SM (August 2014). "Hepatitis C virus and human miR-122: insights from the bench to the clinic". Current Opinion in Virology. 7: 11–18. doi:10.1016/j.coviro.2014.03.005. PMID   24721497.
  21. 1 2 3 Forster SC, Tate MD, Hertzog PJ (2015). "MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response". Frontiers in Immunology. 6: 334. doi: 10.3389/fimmu.2015.00334 . PMC   4495342 . PMID   26217335.
  22. 1 2 3 4 Israelow B, Narbus CM, Sourisseau M, Evans MJ (October 2014). "HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection". Hepatology. 60 (4): 1170–1179. doi:10.1002/hep.27227. PMC   4176518 . PMID   24833036.
  23. 1 2 Park H, Serti E, Eke O, Muchmore B, Prokunina-Olsson L, Capone S, et al. (December 2012). "IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection". Hepatology. 56 (6): 2060–2070. doi:10.1002/hep.25897. PMC   3581145 . PMID   22706965.
  24. 1 2 Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, Noureddin M, et al. (April 2012). "HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons". Gastroenterology. 142 (4): 978–988. doi:10.1053/j.gastro.2011.12.055. PMC   3435150 . PMID   22248663.
  25. 1 2 Narbus CM, Israelow B, Sourisseau M, Michta ML, Hopcraft SE, Zeiner GM, Evans MJ (November 2011). "HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle". Journal of Virology. 85 (22): 12087–12092. doi:10.1128/jvi.05843-11. PMC   3209320 . PMID   21917968.
  26. 1 2 3 Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH, Filipowicz W (January 2009). "Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy". Nature Medicine. 15 (1): 31–33. doi:10.1038/nm.1902. PMID   19122656. S2CID   32303418.
  27. 1 2 3 Li A, Qian J, He J, Zhang Q, Zhai A, Song W, et al. (February 2013). "Modulation of miR‑122 expression affects the interferon response in human hepatoma cells". Molecular Medicine Reports. 7 (2): 585–590. doi: 10.3892/mmr.2012.1233 . PMID   23241652.
  28. 1 2 3 Hao J, Jin W, Li X, Wang S, Zhang X, Fan H, et al. (January 2013). "Inhibition of alpha interferon (IFN-α)-induced microRNA-122 negatively affects the anti-hepatitis B virus efficiency of IFN-α". Journal of Virology. 87 (1): 137–147. doi:10.1128/jvi.01710-12. PMC   3536426 . PMID   23055569.
  29. 1 2 Gao D, Zhai A, Qian J, Li A, Li Y, Song W, et al. (June 2015). "Down-regulation of suppressor of cytokine signaling 3 by miR-122 enhances interferon-mediated suppression of hepatitis B virus". Antiviral Research. 118: 20–28. doi:10.1016/j.antiviral.2015.03.001. PMID   25766860.
  30. He J, Ji Y, Li A, Zhang Q, Song W, Li Y, et al. (2014). "MiR-122 directly inhibits human papillomavirus E6 gene and enhances interferon signaling through blocking suppressor of cytokine signaling 1 in SiHa cells". PLOS ONE. 9 (9): e108410. Bibcode:2014PLoSO...9j8410H. doi: 10.1371/journal.pone.0108410 . PMC   4180754 . PMID   25265013.
  31. 1 2 3 Li A, Song W, Qian J, Li Y, He J, Zhang Q, et al. (April 2013). "MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1". The International Journal of Biochemistry & Cell Biology. 45 (4): 858–865. doi:10.1016/j.biocel.2013.01.008. PMID   23348614.
  32. Xiong Y, Zhang C, Yuan J, Zhu Y, Tan Z, Kuang X, Wang X (March 2015). "Hepatitis C virus represses the cellular antiviral response by upregulating the expression of signal transducer and activator of transcription 3 through sponging microRNA‑122". Molecular Medicine Reports. 11 (3): 1733–1737. doi:10.3892/mmr.2014.2897. PMC   4270330 . PMID   25377467.
  33. Yoshikawa T, Takata A, Otsuka M, Kishikawa T, Kojima K, Yoshida H, Koike K (2012). "Silencing of microRNA-122 enhances interferon-α signaling in the liver through regulating SOCS3 promoter methylation". Scientific Reports. 2: 637. Bibcode:2012NatSR...2E.637Y. doi:10.1038/srep00637. PMC   3434395 . PMID   22957141.
  34. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (October 2007). "Interferon modulation of cellular microRNAs as an antiviral mechanism". Nature. 449 (7164): 919–922. Bibcode:2007Natur.449..919P. doi:10.1038/nature06205. PMC   2748825 . PMID   17943132.
  35. Lee HC, Narayanan S, Park SJ, Seong SY, Hahn YS (February 2014). "Transcriptional regulation of IFN-λ genes in hepatitis C virus-infected hepatocytes via IRF-3·IRF-7·NF-κB complex". The Journal of Biological Chemistry. 289 (8): 5310–5319. doi: 10.1074/jbc.m113.536102 . PMC   3931086 . PMID   24385435.
  36. Aboulnasr F, Hazari S, Nayak S, Chandra PK, Panigrahi R, Ferraris P, et al. (2015). "IFN-λ Inhibits MiR-122 Transcription through a Stat3-HNF4α Inflammatory Feedback Loop in an IFN-α Resistant HCV Cell Culture System". PLOS ONE. 10 (12): e0141655. Bibcode:2015PLoSO..1041655A. doi: 10.1371/journal.pone.0141655 . PMC   4686105 . PMID   26657215.
  37. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (September 2005). "Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA". Science. 309 (5740): 1577–1581. Bibcode:2005Sci...309.1577J. doi:10.1126/science.1113329. PMID   16141076. S2CID   13405582.
  38. Jopling CL, Schütz S, Sarnow P (July 2008). "Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome". Cell Host & Microbe. 4 (1): 77–85. doi:10.1016/j.chom.2008.05.013. PMC   3519368 . PMID   18621012.
  39. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et al. (July 2007). "Cellular cofactors affecting hepatitis C virus infection and replication". Proceedings of the National Academy of Sciences of the United States of America. 104 (31): 12884–12889. Bibcode:2007PNAS..10412884R. doi: 10.1073/pnas.0704894104 . PMC   1937561 . PMID   17616579.
  40. Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, et al. (December 2008). "microRNA-122 stimulates translation of hepatitis C virus RNA". The EMBO Journal. 27 (24): 3300–3310. doi:10.1038/emboj.2008.244. PMC   2586803 . PMID   19020517.
  41. Jangra RK, Yi M, Lemon SM (July 2010). "Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122". Journal of Virology. 84 (13): 6615–6625. doi:10.1128/JVI.00417-10. PMC   2903297 . PMID   20427538.
  42. Norman KL, Sarnow P (January 2010). "Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA miR-122 involves distinct mechanisms". Journal of Virology. 84 (1): 666–670. doi:10.1128/JVI.01156-09. PMC   2798415 . PMID   19846523.
  43. Villanueva RA, Jangra RK, Yi M, Pyles R, Bourne N, Lemon SM (October 2010). "miR-122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes". Antiviral Research. 88 (1): 119–123. doi:10.1016/j.antiviral.2010.07.004. PMC   4422393 . PMID   20637242.
  44. Wilson JA, Zhang C, Huys A, Richardson CD (March 2011). "Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation". Journal of Virology. 85 (5): 2342–2350. doi:10.1128/JVI.02046-10. PMC   3067765 . PMID   21177824.
  45. Machlin ES, Sarnow P, Sagan SM (February 2011). "Masking the 5' terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex". Proceedings of the National Academy of Sciences of the United States of America. 108 (8): 3193–3198. Bibcode:2011PNAS..108.3193M. doi: 10.1073/pnas.1012464108 . PMC   3044371 . PMID   21220300.
  46. Gebert LF, Law M, MacRae IJ (November 2021). "A structured RNA motif locks Argonaute2:miR-122 onto the 5' end of the HCV genome". Nature Communications. 12 (1): 6836. Bibcode:2021NatCo..12.6836G. doi:10.1038/s41467-021-27177-9. PMC   8616905 . PMID   34824224.
  47. Jangra RK, Yi M, Lemon SM (July 2010). "DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation". Journal of Virology. 84 (13): 6810–6824. doi:10.1128/JVI.00397-10. PMC   2903299 . PMID   20392846.
  48. Urban TJ, Thompson AJ, Bradrick SS, Fellay J, Schuppan D, Cronin KD, et al. (December 2010). "IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C". Hepatology. 52 (6): 1888–1896. doi:10.1002/hep.23912. PMC   3653303 . PMID   20931559.
  49. Titze-de-Almeida R, David C, Titze-de-Almeida SS (July 2017). "The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market". Pharmaceutical Research. 34 (7): 1339–1363. doi:10.1007/s11095-017-2134-2. PMID   28389707. S2CID   4925216.
  50. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, et al. (March 2009). "Circulating microRNAs, potential biomarkers for drug-induced liver injury". Proceedings of the National Academy of Sciences of the United States of America. 106 (11): 4402–4407. Bibcode:2009PNAS..106.4402W. doi: 10.1073/pnas.0813371106 . PMC   2657429 . PMID   19246379.
  51. Bihrer V, Friedrich-Rust M, Kronenberger B, Forestier N, Haupenthal J, Shi Y, et al. (September 2011). "Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection". The American Journal of Gastroenterology. 106 (9): 1663–1669. doi:10.1038/ajg.2011.161. hdl: 10033/214238 . PMID   21606975. S2CID   21212744.
  52. Dirksen K, Verzijl T, van den Ingh TS, Vernooij JC, van der Laan LJ, Burgener IA, et al. (May 2016). "Hepatocyte-derived microRNAs as sensitive serum biomarkers of hepatocellular injury in Labrador retrievers". Veterinary Journal. 211: 75–81. doi:10.1016/j.tvjl.2016.01.010. PMID   27021912.
  53. 1 2 Farid WR, Pan Q, van der Meer AJ, de Ruiter PE, Ramakrishnaiah V, de Jonge J, et al. (March 2012). "Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation". Liver Transplantation. 18 (3): 290–297. doi: 10.1002/lt.22438 . PMID   21932376. S2CID   6705422.
  54. Verhoeven, CJ, van der Laan, LJ, de Jonge, J, Metselaar, HJ (2017). Biomarkers to Monitor Graft Function Following Liver Transplantation. Biomarkers in Liver Disease. V. B. Patel and V. R. Preedy. Dordrecht, Springer Netherlands: ISBN   978-94-007-7675-3, page 193–220.
  55. Selten JW, Verhoeven CJ, Heedfeld V, Roest HP, de Jonge J, Pirenne J, et al. (July 2017). "The release of microRNA-122 during liver preservation is associated with early allograft dysfunction and graft survival after transplantation". Liver Transplantation. 23 (7): 946–956. doi: 10.1002/lt.24766 . PMID   28388830. S2CID   4716863.
  56. Morita K, Taketomi A, Shirabe K, Umeda K, Kayashima H, Ninomiya M, et al. (April 2011). "Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C". Liver International. 31 (4): 474–484. doi: 10.1111/j.1478-3231.2010.02433.x . PMID   21199296. S2CID   43197071.
  57. van der Meer AJ, Farid WR, Sonneveld MJ, de Ruiter PE, Boonstra A, van Vuuren AJ, et al. (March 2013). "Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122". Journal of Viral Hepatitis. 20 (3): 158–166. doi:10.1111/jvh.12001. PMID   23383654. S2CID   26661471.
  58. Ruoquan Y, Wanpin N, Qiangsheng X, Guodong T, Feizhou H (February 2014). "Correlation between plasma miR-122 expression and liver injury induced by hepatectomy". The Journal of International Medical Research. 42 (1): 77–84. doi: 10.1177/0300060513499093 . PMID   24287929. S2CID   9586838.
  59. Roest HP, Verhoeven CJ, de Haan JE, de Jonge J, IJzermans JN, van der Laan LJ (November 2016). "Improving Accuracy of Urinary miRNA Quantification in Heparinized Patients Using Heparinase I Digestion". The Journal of Molecular Diagnostics. 18 (6): 825–833. doi: 10.1016/j.jmoldx.2016.06.006 . PMID   27598820.
  60. Verhoeven CJ, Selten JW, Roest HP, Farid WR, de Ruiter PE, Hansen BE, et al. (September 2017). "Corrigendum to "MicroRNA profiles in graft preservation solution are predictive of ischemic-type biliary lesions after liver transplantation" [J Hepatol 2013; 59:1231-1238]". Journal of Hepatology. 67 (6): 1358. doi:10.1016/j.jhep.2017.09.001. PMID   28964525.

Further reading