2-Oxazolidinone

Last updated
2-Oxazolidone
2-Oxazolidone structure.svg
Oxazolidin-2-one-3D-balls.png
Names
Preferred IUPAC name
1,3-Oxazolidin-2-one
Other names
1,3-Oxazolidin-2-one, 2-Oxo-1,3-oxazolidine, 2-Oxotetrahydro-1,3-oxazole
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.129 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C3H5NO2/c5-3-4-1-2-6-3/h1-2H2,(H,4,5) Yes check.svgY
    Key: IZXIZTKNFFYFOF-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H5NO2/c5-3-4-1-2-6-3/h1-2H2,(H,4,5)
    Key: IZXIZTKNFFYFOF-UHFFFAOYAE
  • O=C1OCCN1
Properties
C3H5NO2
Molar mass 87.077 g/mol
Appearancewhite or colorless solid
Melting point 86 to 89 °C (187 to 192 °F; 359 to 362 K)
Boiling point 220 °C (428 °F; 493 K) at 48 torr
Related compounds
Related compounds
Oxazolidine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

2-Oxazolidinone is a heterocyclic organic compound containing both nitrogen and oxygen in a 5-membered ring.

Contents

Synthesis and occurence

The compound arises by the reaction of an ethanolamine and dimethylcarbonate [1] or related phosgene equivalents. [2]

It is one of waste products generated in amine gas treating due to cyclization of ethanolamine carbamate. [3]

History

The compound was first reported in 1888 by German chemist Siegmund Gabriel. While investigating reactions of bromoethylamine hydrobromide, he treated it with silver carbonate and isolated a product with melting point around 90–91°C. He determined its empirical formula correctly, but neither gave it a specific name not studied its properties. [4]

Nine years later Gabriel returned to the topic together with G. Eschenbach, developing a more efficient synthesis using sodium bicarbonate instead of the silver salt. They referred to the compound as "Oxäthylcarbaminsäureanhydrid" (hydroxyethylcarbamic acid anhydride), recognizing its relationship to ethanolamine and its cyclic structure. Their 1897 paper focused on optimizing the yield of oxazolidone and investigating some of its reactions, such as its conversion to 1-(2-hydroxyethyl)-3-phenylurea upon treatment with aniline. [5]

Substituted oxazolidinones

Evans auxiliaries

Oxazolidinones are useful as Evans auxiliaries, which are of interest for chiral synthesis. In a common implementation, an acid chloride substrate reacts with a chiral oxazolidinone to form an imide. Substituents at the 4 and 5 position of the oxazolidinone direct any aldol reaction to the alpha position of the carbonyl of the substrate. [6] Asymmetric Diels-Alder reactions are also enabled by these auxiliaries. [7]

Pharmaceuticals

Oxazolidinones are found in some antimicrobials. Oxazolidinones inhibit protein synthesis by interfering with the binding of N-formylmethionyl-tRNA to the ribosome. [8] (See Linezolid#Pharmacodynamics)

Some of the most important oxazolidinones are antibiotics. [9]

Examples of oxazolidinone-containing antibiotics:

Chemical structure of tedizolid Tedizolid.svg
Chemical structure of tedizolid
Chemical structure of linezolid Linezolid.svg
Chemical structure of linezolid

A first commercially available 1,3-oxazolidinone is the antibiotic linezolid.

See also

Related Research Articles

<span class="mw-page-title-main">Diels–Alder reaction</span> Chemical reaction

In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels–Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.

<span class="mw-page-title-main">Linezolid</span> Antibiotic medication

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid is active against most Gram-positive bacteria that cause disease, including streptococci, vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). The main uses are infections of the skin and pneumonia although it may be used for a variety of other infections including drug-resistant tuberculosis. It is used either by injection into a vein or by mouth.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Anthraquinone</span> Yellow chemical compound: building block of many dyes

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Several isomers exist but these terms usually refer to 9,10-anthraquinone wherein the keto groups are located on the central ring. It is used as a digester additive to wood pulp for papermaking. Many anthraquinone derivatives are generated by organisms or synthesised industrially for use as dyes, pharmaceuticals, and catalysts. Anthraquinone is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

Cyclohexene is a hydrocarbon with the formula (CH2)4C2H2. It is an example of a cycloalkene. At room temperature, cyclohexene is a colorless liquid with a sharp odor. Among its uses, it is an intermediate in the commercial synthesis of nylon.

<span class="mw-page-title-main">Triphosgene</span> Chemical compound

Triphosgene (bis(trichloromethyl) carbonate (BTC)) is a chemical compound with the formula OC(OCCl3)2. It is used as a solid substitute for phosgene, which is a gas and diphosgene, which is a liquid. Triphosgene is stable up to 200 °C. Triphosgene is used in a variety of halogenation reactions.

The chiral pool is a "collection of abundant enantiopure building blocks provided by nature" used in synthesis. In other words, a chiral pool would be a large quantity of common organic enantiomers. Contributors to the chiral pool are amino acids, sugars, and terpenes. Their use improves the efficiency of total synthesis. Not only does the chiral pool contribute a premade carbon skeleton, their chirality is usually preserved in the remainder of the reaction sequence.

<span class="mw-page-title-main">Aza-Diels–Alder reaction</span>

The Aza-Diels–Alder reaction is a modification of the Diels–Alder reaction wherein a nitrogen replaces sp2 carbon. The nitrogen atom can be part of the diene or the dienophile.

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">Diphenylacetylene</span> Chemical compound

Diphenylacetylene is the chemical compound C6H5C≡CC6H5. The molecule consists of two phenyl groups attached to a C2 unit. A colorless solid, it is used as a building block in organic synthesis and as a ligand in organometallic chemistry.

<span class="mw-page-title-main">Dimethyl acetylenedicarboxylate</span> Chemical compound

Dimethyl acetylenedicarboxylate (DMAD) is an organic compound with the formula CH3O2CC2CO2CH3. It is a di-ester in which the ester groups are conjugated with a C-C triple bond. As such, the molecule is highly electrophilic, and is widely employed as a dienophile in cycloaddition reactions, such as the Diels-Alder reaction. It is also a potent Michael acceptor. This compound exists as a colorless liquid at room temperature. This compound was used in the preparation of nedocromil.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">Benzyl cyanide</span> Chemical compound

Benzyl cyanide (abbreviated BnCN) is an organic compound with the chemical formula C6H5CH2CN. This colorless oily aromatic liquid is an important precursor to numerous compounds in organic chemistry. It is also an important pheromone in certain species.

<span class="mw-page-title-main">Tedizolid</span> Oxazolidinone-class antibiotic

Tedizolid, sold under the brand name Sivextro is an oxazolidinone-class antibiotic. Tedizolid phosphate is a phosphate ester prodrug of the active compound tedizolid. It was developed by Cubist Pharmaceuticals, following acquisition of Trius Therapeutics, and is marketed for the treatment of acute bacterial skin and skin structure infections.

<span class="mw-page-title-main">Eperezolid</span> Chemical compound

Eperezolid is an oxazolidinone antibiotic.

<span class="mw-page-title-main">Radezolid</span> Chemical compound

Radezolid is a novel oxazolidinone antibiotic being developed by Melinta Therapeutics, Inc. for the treatment of bacterial acne.

2-Cyclopentenone is the organic compound with the chemical formula (CH2)2(CH)2CO. 2-Cyclopentenone contains two functional groups, a ketone and an alkene. It is a colorless liquid. Its isomer, 3-cyclopentenone is less commonly encountered.

<span class="mw-page-title-main">Thiobenzophenone</span> Chemical compound

Thiobenzophenone is an organosulfur compound with the formula (C6H5)2CS. It is the prototypical thioketone. Unlike other thioketones that tend to dimerize to form rings and polymers, thiobenzophenone is quite stable, although it photoxidizes in air back to benzophenone and sulfur. Thiobenzophenone is deep blue and dissolves readily in many organic solvents.

<span class="mw-page-title-main">Contezolid</span> Chemical compound

Contezolid is an antibiotic of the oxazolidinone class. It is effective against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Streptococcus agalactiae, and other bacteria.

References

  1. Karl-Heinz Scholz, Hans-Georg Heine, Willy Hartmann (1984). "Synthesis and Diels–Alder Rearctions of 3-Acetyl-2(3H)-Oxazolone: 6-Amino-3,4-dimethyl-cis-3-cyclohexen-1-ol". Organic Syntheses. 62: 149. doi:10.15227/orgsyn.062.0149.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. T. Akiba, O. Tamura, S. Terashima (1998). "(4R,5S)-4,5-Diphenyl-3-Vinyl-2-Oxazolidinone". Organic Syntheses. 75: 45. doi:10.15227/orgsyn.075.0045.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Salim, S. R. S. (2021-03-01). "Treatment of amine wastes generated in industrial processes". IOP Conference Series: Materials Science and Engineering. 1092 (1): 012051. doi: 10.1088/1757-899x/1092/1/012051 . ISSN   1757-8981.
  4. Gabriel, S. (1888). "Ueber einige Derivate des Aethylamins". Berichte der Deutschen Chemischen Gesellschaft (in German). 21 (1): 566–575. doi:10.1002/cber.188802101103. ISSN   0365-9496.
  5. Gabriel, S.; Eschenbach, G. (September 1897). "Notizen über Bromäthylamin und Vinylamin". Berichte der Deutschen Chemischen Gesellschaft (in German). 30 (3): 2494–2497. doi:10.1002/cber.18970300324. ISSN   0365-9496.
  6. James R. Gage, David A. Evans (1990). "Diastereoselective Aldol Condensation Using a Chiral Oxazolidinone Auxiliary: (2S,3S)-3-Hydroxy-3-Phenyl-2-Methylpropanoic Acid". Organic Syntheses. 68: 83. doi:10.15227/orgsyn.068.0083.
  7. S. Pikul, E. J. Corey (1993). "Enantioselective, Catlytic Diels-Alder Reaction: (1S-endo)-3-(Bicyclo[2.2.1]Hept-5-en-2-ylcarbonyl)-2-Oxazolidinone". Organic Syntheses. 71: 30. doi:10.15227/orgsyn.071.0030.
  8. Shinabarger, D. (1999). "Mechanism of action of the oxazolidinone antibacterial agents". Expert Opinion on Investigational Drugs. 8 (8): 1195–1202. doi:10.1517/13543784.8.8.1195. PMID   15992144.
  9. Sonia Ilaria Maffioli (2014). "A Chemist's Survey of Different Antibiotic Classes". In Claudio O. Gualerzi; Letizia Brandi; Attilio Fabbretti; Cynthia L. Pon (eds.). Antibiotics: Targets, Mechanisms and Resistance. Wiley-VCH. ISBN   9783527659685.
  10. Wookey, A.; Turner, P. J.; Greenhalgh, J. M.; Eastwood, M.; Clarke, J.; Sefton, C. (2004). "AZD2563, a novel oxazolidinone: definition of antibacterial spectrum, assessment of bactericidal potential and the impact of miscellaneous factors on activity in vitro". Clinical Microbiology and Infection. 10 (3): 247–254. doi: 10.1111/j.1198-743X.2004.00770.x . PMID   15008947.
  11. "Rx 1741". Rib-X Pharmaceuticals. 2009. Archived from the original on 2009-02-26. Retrieved 2009-05-17.
  12. Gordeev, Mikhail F.; Yuan, Zhengyu Y. (2014). "New Potent Antibacterial Oxazolidinone (MRX-I) with an Improved Class Safety Profile". Journal of Medicinal Chemistry. 57 (11): 4487–4497. doi:10.1021/jm401931e. PMID   24694071.
  13. Zhao, Xu; Huang, Haihui; Yuan, Hong; Yuan, Zhengyu; Zhang, Yingyuan (2022). "A Phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections". Journal of Antimicrobial Chemotherapy. 77 (6): 1762–1769. doi:10.1093/jac/dkac073. PMID   35265985.
  14. Hoy, Sheridan M. (2021). "Contezolid: First Approval". Drugs. 81 (13): 1587–1591. doi:10.1007/s40265-021-01576-0. PMC   8536612 . PMID   34365606.
  15. "China NMPA Approves MicuRx's Contezolid for Treatment of Drug-Resistant Bacterial Infection – MicuRx Pharmaceuticals, Inc".
  16. ClinicalTrials.gov Identifier: NCT05369052