209 (number)

Last updated
208 209 210
Cardinal two hundred nine
Ordinal 209th
(two hundred ninth)
Factorization 11 × 19
Divisors 1, 11, 19, 209 (4)
Greek numeral ΣΘ´
Roman numeral CCIX, ccix
Binary 110100012
Ternary 212023
Senary 5456
Octal 3218
Duodecimal 15512
Hexadecimal D116

209 (two hundred [and] nine) is the natural number following 208 and preceding 210.

In mathematics

By Legendre's three-square theorem, all numbers congruent to 1, 2, 3, 5, or 6 mod 8 have representations as sums of three squares, but this theorem does not explain the high number of such representations for 209.

References

  1. Sloane, N. J. A. (ed.). "SequenceA001353(a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. Kreweras, Germain (1978), "Complexité et circuits eulériens dans les sommes tensorielles de graphes" [Complexity & Eulerian circuits in graphic tensorial sums], Journal of Combinatorial Theory, Series B (in French), 24 (2): 202–212, doi: 10.1016/0095-8956(78)90021-7 , MR   0486144
  3. Sloane, N. J. A. (ed.). "SequenceA002720(Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  4. Laradji, A.; Umar, A. (2007), "Combinatorial results for the symmetric inverse semigroup", Semigroup Forum, 75 (1): 221–236, doi:10.1007/s00233-007-0732-8, MR   2351933, S2CID   122239867
  5. Sloane, N. J. A. (ed.). "SequenceA006897(Hierarchical linear models on n factors allowing 2-way interactions; or graphs with <= n nodes.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  6. Adams, Peter; Eggleton, Roger B.; MacDougall, James A. (2006), "Taxonomy of graphs of order 10" (PDF), Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, 180: 65–80, MR   2311249
  7. Sloane, N. J. A. (ed.). "SequenceA025414(a(n) is the smallest number that is the sum of 3 nonzero squares in exactly n ways.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "SequenceA057588(Kummer numbers: -1 + product of first n consecutive primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  9. O'Shea, Owen (2016), The Call of the Primes: Surprising Patterns, Peculiar Puzzles, and Other Marvels of Mathematics, Prometheus Books, p. 44, ISBN   9781633881488
  10. Sloane, N. J. A. (ed.). "SequenceA125549(Composite Kummer numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.