6-Pyruvoyltetrahydropterin synthase

Last updated
6-Pyruvoyltetrahydropterin synthase
PTPS enzyme pymol pretty view.png
PTPS enzyme pymol pretty
Identifiers
EC no. 4.2.3.12
CAS no. 97089-82-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme 6-pyruvoyltetrahydropterin synthase (EC 4.2.3.12, PTPS) catalyzes the following chemical reaction:

Contents

7,8-Dihydroneopterin 3′-triphosphate 6-pyruvoyltetrahydropterin + triphosphate

PTPS catalyzed synthesis of 6-Pyruvoyltetrahyrdopterin PTPS catalyzed synthesis of 6-Pyruvoyltetrahydropterin from 7,8-Dihydroneopterin triphosphate.png
PTPS catalyzed synthesis of 6-Pyruvoyltetrahyrdopterin

This reaction is the second step (shown above) in the biosynthesis of tetrahydrobiopterin from GTP, which is used as a cofactor in the synthesis of aromatic amino acid monooxygenases and nitric oxide synthase [1] [2] PTPS converts 7,8-dihydroneopterin triphosphate to 6-pyruvoyltetrahydropterin (PTP) through the loss of the triphosphate group, a stereospecific reduction of the double bond between the top right nitrogen and carbon in the ring on the triphosphate on the right, the oxidation of the hydroxyl groups located on the first and second carbons of the side chain, and an internal base-catalyzed hydrogen transfer. [3] ] 6-pyruvoyltetrahydropterin synthase (PTPS) can be found in the cytoplasm as well as the nucleus of cells according to immunohistochemical studies conducted. It has also been found that in higher species 6-pyruvoyltetrahydropterin synthase (PTPS) can undergo post-translational modification.

This enzyme participates in tetrahydrobiopterin biosynthesis.

Nomenclature

This enzyme belongs to the family of lyases, to be specific, those carbon-oxygen lyases acting on phosphates. The systematic name of this enzyme class is 6-[(1S,2R)-1,2-dihydroxy-3′-triphosphooxypropyl]-7,8-dihydropterin triphosphate-lyase (6-pyruvoyl-5,6,7,8-tetrahydropterin-forming). Other names in common use include 2-amino-4-oxo-6-[(1S,2R)-1,2-dihydroxy-3-triphosphooxypropyl]-7,8-, and dihydroxypteridine triphosphate lyase.

Structure

6-pyruvoyltetrahydropterin synthase (PTPS) is a hexamer with D3 symmetry, and dimensions 60 × 60 × 60 A ̊. [4] It is composed of identical subunits formed from a dimer of trimers. A 12-stranded antiparallel b-barrel is formed by the trimer of dimers and creates a pore within PTPS, with a 6 to 12 A ̊ diameter. [4] [5] The trimers are connected by contact between the β-sheets of monomers, which are perpendicular to each other, separated by less than 4 Angstroms, and connected in three locations residues 20–24, 48–51, and 89–91. [4]

One enzymatic active site is located where the three monomers come together in each subunit of the hexamer. Three histidine residues: His23, His48 and His50 create a transition metal binding site where Zn(II) binds and is the cause of enzymatic [6] activity in the center of the pore. [5] [7] Above the Zn(II) ion are GluA133 and CysA42, which are catalytically important because they are close to the metal but do not bind to it. [5] The lack of binding implies that the substrate binds to the Zn(II) inside the pore during catalysis. [7]

Genetics

This enzyme 6-pyruvoyltetrahydropterin synthase is encoded by the PTS gene. A mutation in the 6-PTS gene may be the cause of a hereditary dystonic disorder. [8] There have been four mutations of the 6-PTS gene found. The mutations include two homozygous mutations, R25Q and I114V, and two compound heterozygous mutations, R16C and K120stop. [2] [9] The deficiency is only associated with the recessive gene being passed on from parent to child.

Clinical significance

6-Pyruvoyltetrahydropterin synthase deficiency is the most common cause of a deficiency of tetrahydrobiopterin. [8] Tetrahydrobiopterin deficiency leads to hyperphenylalaninemia and the inability to make neurotransmitters such as dopamine and serotonin. [10] PTPS deficiency has been shown to lead to severe mental retardation, delayed motor development, and seizures. Low levels of tetrahydrobiopterin production, opposed to near complete lack of tetrahydrobiopterin may cause fluctuations in the symptoms experienced throughout the day. [1] [10]

Related Research Articles

<span class="mw-page-title-main">Tetrahydrobiopterin</span> Chemical compound

Tetrahydrobiopterin (BH4, THB), also known as sapropterin (INN), is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide synthases. Chemically, its structure is that of a (dihydropteridine reductase) reduced pteridine derivative (quinonoid dihydrobiopterin).

<span class="mw-page-title-main">Pterin</span> Chemical compound

Pterin is a heterocyclic compound composed of a pteridine ring system, with a "keto group" and an amino group on positions 4 and 2 respectively. It is structurally related to the parent bicyclic heterocycle called pteridine. Pterins, as a group, are compounds related to pterin with additional substituents. Pterin itself is of no biological significance.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase also known as MS, MeSe, MTR is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Tetrahydrobiopterin deficiency</span> Medical condition

Tetrahydrobiopterin deficiency (THBD, BH4D) is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained normally through the diet, but can be harmful if excess levels build up, causing intellectual disability and other serious health problems. In healthy individuals, it is metabolised (hydroxylated) into tyrosine, another amino acid, by phenylalanine hydroxylase. However, this enzyme requires tetrahydrobiopterin as a cofactor and thus its deficiency slows phenylalanine metabolism.

<span class="mw-page-title-main">QDPR</span> Human gene

QDPR is a human gene that produces the enzyme quinoid dihydropteridine reductase. This enzyme is part of the pathway that recycles a substance called tetrahydrobiopterin, also known as BH4. Tetrahydrobiopterin works with an enzyme called phenylalanine hydroxylase to process a substance called phenylalanine. Phenylalanine is an amino acid that is obtained through the diet; it is found in all proteins and in some artificial sweeteners. When tetrahydrobiopterin interacts with phenylalanine hydroxylase, tetrahydrobiopterin is altered and must be recycled to a usable form. The regeneration of this substance is critical for the proper processing of several other amino acids in the body. Tetrahydrobiopterin also helps produce certain chemicals in the brain called neurotransmitters, which transmit signals between nerve cells.

<span class="mw-page-title-main">6-Pyruvoyltetrahydropterin synthase deficiency</span> Medical condition

6-Pyruvoyltetrahydropterin synthase deficiency is an autosomal recessive disorder that causes malignant hyperphenylalaninemia due to tetrahydrobiopterin deficiency. It is a recessive disorder that is accompanied by hyperphenylalaninemia. Commonly reported symptoms are initial truncal hypotonia, subsequent appendicular hypertonia, bradykinesia, cogwheel rigidity, generalized dystonia, and marked diurnal fluctuation. Other reported clinical features include difficulty in swallowing, oculogyric crises, somnolence, irritability, hyperthermia, and seizures. Chorea, athetosis, hypersalivation, rash with eczema, and sudden death have also been reported. Patients with mild phenotypes may deteriorate if given folate antagonists such as methotrexate, which can interfere with a salvage pathway through which dihydrobiopterin is converted into tetrahydrobiopterin via dihydrofolate reductase. Treatment options include substitution with neurotransmitter precursors, monoamine oxidase inhibitors, and tetrahydrobiopterin. Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype–phenotype correlation and outcome of these diseases, their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).

<span class="mw-page-title-main">GTP cyclohydrolase I</span>

GTP cyclohydrolase I (GTPCH) (EC 3.5.4.16) is a member of the GTP cyclohydrolase family of enzymes. GTPCH is part of the folate and biopterin biosynthesis pathways. It is responsible for the hydrolysis of guanosine triphosphate (GTP) to form 7,8-dihydroneopterin triphosphate (7,8-DHNP-3'-TP, 7,8-NH2-3'-TP).

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Cystathionine beta synthase</span> Mammalian protein found in humans

Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:

<span class="mw-page-title-main">Biopterin</span> Chemical compound

Biopterins are pterin derivatives which function as endogenous enzyme cofactors in many species of animals and in some bacteria and fungi. The prototypical compound of the class is biopterin, as shown in the infobox. Biopterins act as cofactors for aromatic amino acid hydroxylases (AAAH), which are involved in synthesizing a number of neurotransmitters including dopamine, norepinephrine, epinepherine, and serotonin, along with several trace amines. Nitric oxide synthesis also uses biopterin derivatives as cofactors. In humans, tetrahydrobiopterin (BH4) is the endogenous cofactor for AAAH enzymes.

<span class="mw-page-title-main">Sepiapterin reductase</span>

Sepiapterin reductase is an enzyme that in humans is encoded by the SPR gene.

In enzymology, a 6-pyruvoyltetrahydropterin 2'-reductase (EC 1.1.1.220) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">PTS (gene)</span> Protein-coding gene in the species Homo sapiens

6-pyruvoyltetrahydropterin synthase, also known as PTS, is a human gene which facilitates folate biosynthesis.

<span class="mw-page-title-main">PCBD1</span> Protein-coding gene in the species Homo sapiens

Pterin-4-alpha-carbinolamine dehydratase is an enzyme that in humans is encoded by the PCBD1 gene.

7,8-Dihydroneopterin triphosphate (DHNTP) is an intermediate in tetrahydrobiopterin biosynthesis. It is transformed by 6-pyruvoyltetrahydropterin synthase into 6-pyruvoyl-tetrahydropterin. It is also used in the Queuosine/Archeosine Pathway.

Molybdopterin synthase (EC 2.8.1.12, MPT synthase) is an enzyme required to synthesize molybdopterin (MPT) from precursor Z (now known as cyclic pyranopterin monophosphate). Molydopterin is subsequently complexed with molybdenum to form molybdenum cofactor (MoCo). MPT synthase catalyses the following chemical reaction:

Sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming) (EC 1.1.1.325) is an enzyme with systematic name L-threo-7,8-dihydrobiopterin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">6-carboxytetrahydropterin synthase</span> Enzyme

6-carboxytetrahydropterin synthase (EC 4.1.2.50, CPH4 synthase, queD (gene), ToyB, ykvK (gene)) is an enzyme with systematic name 7,8-dihydroneopterin 3'-triphosphate acetaldehyde-lyase (6-carboxy-5,6,7,8-tetrahydropterin and triphosphate-forming). This enzyme catalyses the following reversible chemical reaction.

7-Carboxy-7-deazaguanine synthase (EC 4.3.99.3, 7-carboxy-7-carbaguanine synthase, queE (gene)) is an enzyme with systematic name 6-carboxy-5,6,7,8-tetrahydropterin ammonia-lyase. This enzyme catalyses the following chemical reaction

Catecholamines up (Catsup) is a dopamine regulatory membrane protein that functions as a zinc ion transmembrane transporter (orthologous to ZIP7), and a negative regulator of rate-limiting enzymes involved in dopamine synthesis and transport: Tyrosine hydroxylase (TH), GTP Cyclohydrolase I (GTPCH), and Vesicular Monoamine Transporter (VMAT) in Drosophila melanogaster.

References

  1. 1 2 Hoffmann GF, Wolf B. "Abnormalities of tetrahydrobiopterin metabolism". MedLink Neurology.
  2. 1 2 "6-pyruvoyl-tetrahydropterin synthase deficiency - Conditions - GTR - NCBI". www.ncbi.nlm.nih.gov.
  3. Bürgisser DM, Thöny B, Redweik U, Hess D, Heizmann CW, Huber R, Nar H (October 1995). "6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding". Journal of Molecular Biology. 253 (2): 358–69. doi: 10.1006/jmbi.1995.0558 . PMID   7563095.
  4. 1 2 3 Nar H (2011). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd. doi:10.1002/9781119951438.eibc0475. ISBN   978-1-119-95143-8.
  5. 1 2 3 Ploom T, Thöny B, Yim J, Lee S, Nar H, Leimbacher W, Richardson J, Huber R, Auerbach G (February 1999). "Crystallographic and kinetic investigations on the mechanism of 6-pyruvoyl tetrahydropterin synthase". Journal of Molecular Biology. 286 (3): 851–60. doi:10.1006/jmbi.1998.2511. PMID   10024455.
  6. Blaui N, Thony B, Heizmanni CW, Dhondt J (1993). "Tetrahydrobiopterin Deficiency: From Phenotype to Genotype". Pteridines. 4: 1–10. doi: 10.1515/pteridines.1993.4.1.1 . S2CID   53485331.
  7. 1 2 Nar H, Huber R, Heizmann CW, Thöny B, Bürgisser D (March 1994). "Three-dimensional structure of 6-pyruvoyl tetrahydropterin synthase, an enzyme involved in tetrahydrobiopterin biosynthesis". The EMBO Journal. 13 (6): 1255–62. doi:10.1002/j.1460-2075.1994.tb06377.x. PMC   394939 . PMID   8137809.
  8. 1 2 Reference, Genetics Home. "Tetrahydrobiopterin deficiency". Genetics Home Reference. Retrieved 2018-03-09.
  9. Thöny B, Blau N (1997). "Mutations in the GTP cyclohydrolase I and 6-pyruvoyl-tetrahydropterin synthase genes". Human Mutation. 10 (1): 11–20. doi:10.1002/(SICI)1098-1004(1997)10:1<11::AID-HUMU2>3.0.CO;2-P. PMID   9222755. S2CID   9085242.
  10. 1 2 Hanihara T, Inoue K, Kawanishi C, Sugiyama N, Miyakawa T, Onishi H, Yamada Y, Osaka H, Kosaka K, Iwabuchi K, Owada M (May 1997). "6-Pyruvoyl-tetrahydropterin synthase deficiency with generalized dystonia and diurnal fluctuation of symptoms: a clinical and molecular study". Movement Disorders. 12 (3): 408–11. doi:10.1002/mds.870120321. PMID   9159737. S2CID   43917747.

Further reading