Colorburst

Last updated
Horizontal sync and color burst of the composite output of a Commodore 64 computer Commodore 64 PAL horizontal sync and colourburst.jpg
Horizontal sync and color burst of the composite output of a Commodore 64 computer

Colorburst is an analog and composite video signal generated by a video-signal generator used to keep the chrominance subcarrier synchronized in a color television signal. By synchronizing an oscillator with the colorburst at the back porch (beginning) of each scan line, a television receiver is able to restore the suppressed carrier of the chrominance (color) signals, and in turn decode the color information. The most common use of colorburst is to genlock equipment together as a common reference with a vision mixer in a television studio using a multi-camera setup.

Contents

Explanation

In NTSC, its frequency is exactly 315/88 = 3.57954 [lower-alpha 1]   MHz with a phase of 180°. PAL uses a frequency of exactly 4.43361875 MHz, with its phase alternating between 135° and 225° from line to line. Since the colorburst signal has a known amplitude, it is sometimes used as a reference level when compensating for amplitude variations in the overall signal.

SECAM is unique in not having a colorburst signal, since the chrominance signals are encoded using FM rather than QAM, thus the signal phase is immaterial and no reference point is needed.

Rationale for NTSC Color burst frequency

The original black and white NTSC television standard specified a frame rate of 30 Hz and 525 lines per frame, or 15750 lines per second. The audio was frequency modulated 4.5 MHz above the video signal. Because this was black and white, the video consisted only of luminance (brightness) information. Although all of the space in between was occupied, the line-based nature of the video information meant that the luminance data was not spread uniformly across the frequency domain; it was concentrated at multiples of the line rate. Plotting the video signal on a spectrogram gave a signature that looked like the teeth of a comb or a gear, rather than smooth and uniform.

RCA discovered [1] that if the chrominance (color) information, which had a similar spectrum, was modulated on a carrier that was a half-integer multiple of the line rate, its signal peaks would fit neatly between the peaks of the luminance data and interference was minimized. It was not eliminated, but what remained was not readily apparent to human eyes. (Modern televisions attempt to reduce this interference further using a comb filter.)

To provide sufficient bandwidth for the chrominance signal, yet interfere only with the highest-frequency (and thus least perceptible) portions of the luminance signal, a chrominance subcarrier near 3.6 MHz was desirable. 227.5 = 455/2 times the line rate was close to the right number, and 455's small factors (5 × 7 × 13) make a divider easy to construct.

However, additional interference could come from the audio signal. To minimize interference there, it was similarly desirable to make the distance between the chrominance carrier frequency and the audio carrier frequency a half-integer multiple of the line rate. The sum of these two half-integers implies that the distance between the frequency of the luminance carrier and audio carrier must be an integer multiple of the line rate. However, the original NTSC standard, with a 4.5 MHz carrier spacing and a 15750 Hz line rate, did not meet this requirement: the audio was 285.714 times the line rate.

While existing black and white receivers could not decode a signal with a different audio carrier frequency, they could easily use the copious timing information in the video signal to decode a slightly slower line rate. Thus, the new color television standard reduced the line rate by a factor of 1.001 to 1/286 of the 4.5 MHz audio subcarrier frequency, or about 15734.2657 Hz. This reduced the frame rate to 30/1.001 ≈ 29.9700 Hz, and placed the color subcarrier at 227.5/286 = 455/572 = 35/44 of the 4.5 MHz audio subcarrier. [2]

Crystals

An NTSC or PAL television's color decoder contains a colorburst crystal oscillator.

Because so many analog color TVs were produced from the 1960s to the early 2000s, economies of scale drove down the cost of colorburst crystals, so they were often used in various other applications, such as oscillators for microprocessors or for amateur radio: 3.5795 MHz has since become a common QRP calling frequency in the 80-meter band, and its doubled frequency of 7.159 MHz is a common calling frequency in the 40-meter band. Tripling this frequency is also how FM radio circuits came to use a nominally 10.7 MHz intermediate frequency in superheterodyne conversion.

Non-television uses of NTSC color burst frequency
(generally only in the NTSC version of each device):
f = 315 MHz/88 = 3.57954 [lower-alpha 1]  MHz
ComponentFrequencyRelationship
Intellivision CPU0.8949 MHz1/4f
TRS-80 Color Computer CPU (normal speed)
Apple II CPU (short cycles only, one in 65 cycles is longer)1.0227 MHz2/7f
VIC-20 CPU
Commodore 64 CPU
Commodore 128 CPU (SLOW mode & C64 compatible mode)
Atari 2600 CPU [3] 1.1932 MHz1/3f
Intel 8253 interval timer in IBM PC (remains in use today)
Fairchild Video Entertainment System CPU1.7898 MHz1/2f
Odyssey 2 CPU
Atari 8-bit family [4] and Atari 7800 CPU
Commodore Plus/4 CPU
Nintendo Entertainment System CPU
TRS-80 Color Computer 3 CPU (fast mode)
Commodore 128 CPU (FAST mode & CP/M mode)2.0454 MHz4/7f
Super Nintendo Entertainment System CPU2.6847 MHz3/4f
3.5795 MHzf
Master System CPU3.5795 MHzf
MSX CPU
Amateur radio Tx/Rx crystal for 80m band
ColecoVision CPU
Yamaha OPL and OPL2 FM synthesis sound chips
ACPI power management timer
CPU of IBM Personal Computer 51504.7727 MHz4/3f
Commodore Amiga CPU7.1591 MHz2f
CPU of Tandy 1000 SX [5] (and many other IBM PC-XT clones)
NEC TurboGrafx-16 CPU
Yamaha TX81Z synthesizer CPU
Amateur radio Tx/Rx crystal for 40m band
Sega Genesis CPU7.6705 MHz15/7f
Intermediate frequency of FM radio superheterodyne circuits10.7386 MHz3f
High Precision Event Timer (typical)14.3181 MHz4f
Non-television uses of PAL colour burst frequency
(generally only in the PAL version of each device):
f = 283.75 × 15625 Hz + 25 Hz = 4.43361875 MHz
ComponentFrequencyRelationship
Commodore 64 CPU0.9852 MHz2/9f
Commodore 128 CPU (SLOW mode & C64 compatible mode)
Atari 2600 CPU1.182298 MHz [3] 4/15f
VIC-20 CPU1.1084 MHz1/4f
Nintendo Entertainment System CPU [6] 1.662607 MHz3/8f
Atari 8-bit family CPU [4] 1.7734475 MHz2/5f
Dendy (console) NES clone CPU [6]
Commodore 128 CPU (FAST mode & CP/M mode)1.9704 MHz4/9f
Super Nintendo Entertainment System CPU2.6601712 MHz3/5f
3.546895 MHz4/5f
Commodore Amiga CPU7.09379 MHz8/5f

See also

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">Chrominance</span> Colour in an image or video

Chrominance is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B′ − Y′ (blue − luma) and V = R′ − Y′ (red − luma). Each of these different components may have scale factors and offsets applied to it, as specified by the applicable video standard.

<span class="mw-page-title-main">NTSC</span> Analog television system

NTSC is the first American standard for analog television, published in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analogue television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">SECAM</span> French analog color television system

SECAM, also written SÉCAM, is an analog color television system that was used in France, Russia and some other countries or territories of Europe and Africa. It was one of three major analog color television standards, the others being PAL and NTSC. Like PAL, a SECAM picture is also made up of 625 interlaced lines and is displayed at a rate of 25 frames per second. However, due to the way SECAM processes color information, it is not compatible with the German PAL video format standard. This page primarily discusses the SECAM colour encoding system. The articles on broadcast television systems and analog television further describe frame rates, image resolution, and audio modulation. SECAM video is composite video because the luminance and chrominance are transmitted together as one signal.

<span class="mw-page-title-main">Composite video</span> Analog video signal format

Composite video is an analog video format that typically carries a 525 or 625 line signal on a single channel, unlike the higher-quality S-Video and the even higher-quality component video.

<span class="mw-page-title-main">SMPTE timecode</span> Standards to label individual frames of video or film with a timestamp

SMPTE timecode is a set of cooperating standards to label individual frames of video or film with a timecode. The system is defined by the Society of Motion Picture and Television Engineers in the SMPTE 12M specification. SMPTE revised the standard in 2008, turning it into a two-part document: SMPTE 12M-1 and SMPTE 12M-2, including new explanations and clarifications.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

Broadcasttelevision systems are the encoding or formatting systems for the transmission and reception of terrestrial television signals.

In telecommunications, a pilot signal is a signal, usually a single frequency, transmitted over a communications system for supervisory, control, equalization, continuity, synchronization, or reference purposes.

<span class="mw-page-title-main">Vectorscope</span>

A Vectorscope is a special type of oscilloscope used in both audio and video applications. Whereas an oscilloscope or waveform monitor normally displays a plot of signal vs. time, a vectorscope displays an X-Y plot of two signals, which can reveal details about the relationship between these two signals. Vectorscopes are highly similar in operation to oscilloscopes operated in X-Y mode; however those used in video applications have specialized graticules, and accept standard television or video signals as input.

<span class="mw-page-title-main">Dot crawl</span>

Dot crawl is a visual defect of color analog video standards when signals are transmitted as composite video, as in terrestrial broadcast television. It consists of moving checkerboard patterns which appear along horizontal color transitions. It results from intermodulation or crosstalk between chrominance and luminance components of the signal, which are imperfectly multiplexed in the frequency domain.

Time base correction (TBC) is a technique to reduce or eliminate errors caused by mechanical instability present in analog recordings on mechanical media.

Burst phase is the first ten cycles of colorburst in the "porch" of the synchronising pulse in the PAL broadcast television systems format. The frequency of this burst is 4.43361875 MHz; it is precise to .5 Hz, and is used as the reference frequency to synchronise the local oscillators of the colour decoder in a PAL television set.

MUSE, commercially known as Hi-Vision was a Japanese analog high-definition television system, with design efforts going back to 1979.

<span class="mw-page-title-main">CCIR System B</span> 625-line analog television transmission format

CCIR System B was the 625-line VHF analog broadcast television system which at its peak was adopted by more than one hundred countries, either with PAL or SECAM colour. It usually associated with CCIR System G for UHF broadcasts.

A white clipper is a circuit in professional video products that limits the maximum amplitude of the luminance part of the analogue video signal to 1 volt. It is essential for both analogue recording and transmission of video material.

CCIR System A was the 405-line analog broadcast television system adopted in the UK and Ireland. System A service started in 1936 and was discontinued in 1985.

<span class="mw-page-title-main">CCIR System I</span> 625-line analogue TV transmission format

CCIR System I is an analogue broadcast television system. It was first used in the Republic of Ireland starting in December 1961 as the 625-line broadcasting standard to be used on VHF Band I and Band III, sharing Band III with 405-line System A signals radiated in the north and east of the country. The Republic of Ireland has (slowly) extended its use of System I onto the UHF bands.

<span class="mw-page-title-main">CCIR System N</span> 625-line analog television transmission format

CCIR System N is an analog broadcast television system introduced in 1951 and adopted by Argentina, Paraguay and Uruguay, paired with the PAL color system (PAL-N). It was also used briefly in Brazil and Venezuela.

References

  1. Brown and Luck (June 1953). "PRINCIPLES AND DEVELOPMENT OF COLOR TELEVISION SYSTEMS" (PDF). RCA Review. XIV: 155–156.
  2. "NTSC SIGNAL SPECIFICATIONS" (PDF). Antique Radio.org. 23 May 2018.
  3. 1 2 Atari 2600 Specifications http://problemkaputt.de/2k6specs.htm
  4. 1 2 Altirra Hardware Reference Manual, "Cycle Timings", http://www.virtualdub.org/downloads/Altirra%20Hardware%20Reference%20Manual.pdf
  5. In normal (high speed) mode. The 1000 SX also has a slower 4.77 MHz mode (43f ) for IBM PCjr compatibility.
  6. 1 2 NES DEV wiki: Clock Rate

Notes