Differential gain

Last updated

Differential gain is a kind of linearity distortion that affects the amplification and transmission of analog signals. It can visibly affect color saturation in analog TV broadcasting.

Contents

Composite color video signal

The composite color video signal (CCVS) consists of three terms:

The first two terms are usually called composite video signal (CVS)

The modulation technique of the color subcarrier is quadrature amplitude modulation (QUAM) both in PAL and NTSC systems. The amplitude of the color signal represents the saturation (purity) in both systems. On the other hand, the level of the CVS represents the brightness. So in order to reproduce the original vision in the receiver the ratio between these two pieces of information should be kept constant in the receiver.

Nonlinearity in the broadcast system

The main steps of visual signal from the scene to receiver screen (for terrestrial broadcasting) are as follows:

In cable broadcasting and satellite broadcasting some of the above maybe replaced by other equipment.

All of the above circuitry include active circuit devices. These devices are only approximately linear devices. In particular, amplification factor is not constant for all levels. The amplification factor may decrease or increase as the input level increases. This is known as gain nonlinearity. In system specifications, the nonlinearity in percentage is almost always specified. It must be under a tolerable level depending on the required sensitivity of the system.

Differential gain

Differential gain is a special case of gain nonlinearity. Let CCVS be represented by

The output of an ideal amplifier with the amplification factor of A is;

However, in practice this goal is almost never attained. The amplification factor of color signal is always slightly different than that of CVS. (The color signal is superimposed on CVS).

Problems caused by differential gain

Any color can be totally described by luminance, saturation and hue. When the gain of the reproduced color signal is lower than that of luminance, the perceived colors are paler than their originals. Conversely, when the gain of the reproduced color signal is higher than the luminance, the perceived colors are too loud.

Measuring

Top:Input, Middle:Output, Bottom:Output after HPF Differential gain.jpg
Top:Input, Middle:Output, Bottom:Output after HPF

To measure the percentage of differential gain, the standard sawtooth signal with superimposed color carrier is used (4.43 MHz in PAL and 3.58 MHz. in NTSC) The sawtooth represents the CVS with all possible levels between 0.3 V to 1 V. The waveforms are shown in the accompanying image frame. The top figure shows the input. Note that the amplitude of the superimposed color signal is constant. The middle figure shows the distorted output. In this example, color signal superimposed on a high level luminance signal has been attenuated. The bottom figure shows the same waveform after passing through a high pass filter to facilitate measuring. (CVS is filtered out leaving only color signal).

According to European standards, DG should be less than 10%.

A special case of PAL

DG is a problem both in NTSC and PAL. But PAL (phase alternating at line rate) is more sensitive to this kind of distortion. PAL averages phase differences of color signal in two consecutive lines. [1]

Let be the phase lag:

So the phase differences between two consecutive lines (so-called differential phase) are converted to differential gain distortions. (Hue is preserved at the risk of decreased saturation).

For example, a differential phase of 10° introduces an additional gain loss of 2%.

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. They convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices ranging from the simplest clock generators to digital instruments and complex computers and peripherals etc. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

<span class="mw-page-title-main">NTSC</span> Analog television system

The first American standard for analog television broadcast was developed by the National Television System Committee (NTSC) in 1941. In 1961, it was assigned the designation System M.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analogue television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">SECAM</span> French analog color television system

SECAM, also written SÉCAM, is an analog color television system that was used in France, some parts of Europe and Africa, and Russia. It was one of three major analog color television standards, the others being PAL and NTSC. This page primarily discusses the SECAM colour encoding system. The articles on broadcast television systems and analog television further describe frame rates, image resolution, and audio modulation. SECAM video is composite video because the luminance and chrominance are transmitted together as one signal.

<span class="mw-page-title-main">Single-sideband modulation</span> Type of modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

<span class="mw-page-title-main">Heterodyne</span> Signal processing technique

A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.

<span class="mw-page-title-main">Colorburst</span>

Colorburst is an analog video, composite video signal generated by a video-signal generator used to keep the chrominance subcarrier synchronized in a color television signal. By synchronizing an oscillator with the colorburst at the back porch (beginning) of each scan line, a television receiver is able to restore the suppressed carrier of the chrominance (color) signals, and in turn decode the color information. The most common use of colorburst is to genlock equipment together as a common reference with a vision mixer in a television studio using a multi-camera setup.

<span class="mw-page-title-main">Frequency mixer</span> Circuit that creates new frequencies from two signals

In electronics, a mixer, or frequency mixer, is an electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. Other frequency components may also be produced in a practical frequency mixer.

<span class="mw-page-title-main">Vectorscope</span>

A Vectorscope is a special type of oscilloscope used in both audio and video applications. Whereas an oscilloscope or waveform monitor normally displays a plot of signal vs. time, a vectorscope displays an X-Y plot of two signals, which can reveal details about the relationship between these two signals. Vectorscopes are highly similar in operation to oscilloscopes operated in X-Y mode; however those used in video applications have specialized graticules, and accept standard television or video signals as input.

<span class="mw-page-title-main">Comb filter</span> Signal processing filter

In signal processing, a comb filter is a filter implemented by adding a delayed version of a signal to itself, causing constructive and destructive interference. The frequency response of a comb filter consists of a series of regularly spaced notches in between regularly spaced peaks giving the appearance of a comb.

A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40–60 miles depending on the height of transmitter station.

<span class="mw-page-title-main">Parametric oscillator</span>

A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameter of the system at some frequency, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .

In statistics, signal processing, and time series analysis, a sinusoidal model is used to approximate a sequence Yi to a sine function:

A white clipper is a circuit in professional video products that limits the maximum amplitude of the luminance part of the analogue video signal to 1 volt. It is essential for both analogue recording and transmission of video material.

Superheterodyne transmitter is a radio or TV transmitter which uses an intermediate frequency signal in addition to radio frequency signal.

In television broadcasting, VIT signals are a group of test signals inserted in the composite video signal. These signals are used to weight the transmission characteristics of the system between the test generator and the output of the demodulator, where the system includes the microwave links, or TVROs as well as the TV transmitters and the transposers. There are both ATSC and EBU standards for VIT.

Differential phase is a kind of linearity distortion which affects the color hue in TV broadcasting.

The color killer is an electronic stage in color TV receiver sets which acts as a cutting circuit to cut off color processing when the TV set receives a monochrome signal.

<span class="mw-page-title-main">Averaged Lagrangian</span>

In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.

References

  1. V.F. Samoylov-B.P. Khromoy: Television (trans: Boris Kuznetsov) Mir Publishers, Moscow (1977), p.375

Further reading