False gharial

Last updated

False gharial
Temporal range: Late Pleistocene - Recent, 0.1–0  Ma [1]
O
S
D
C
P
T
J
K
Pg
N
Tomistoma schlegelii fg01.JPG
Captive false gharial in Berlin Zoo, Germany
CITES Appendix I (CITES) [2]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Archosauromorpha
Clade: Archosauriformes
Order: Crocodilia
Family: Gavialidae
Subfamily: Tomistominae
Genus: Tomistoma
Müller, 1846
Species:
T. schlegelii
Binomial name
Tomistoma schlegelii
(Müller, 1838)
The range of the False gharial.png
Range of the false gharial
Synonyms

Pseudogavialis schlegelii

The false gharial (Tomistoma schlegelii), also known by the names Malayan gharial, Sunda gharial and tomistoma is a freshwater crocodilian of the family Gavialidae native to Peninsular Malaysia, Borneo, Sumatra and Java. It is listed as Endangered on the IUCN Red List, as the global population is estimated at around 2,500 to 10,000 mature individuals. [2]

Contents

The species name schlegelii honors Hermann Schlegel. [3] [4]

Characteristics

Gembira Loka Zoo False gharial (Tomistoma schlegelii), Gembira Loka Zoo, 2015-01-15 01.jpg
Gembira Loka Zoo
Los Angeles Zoo Tomistoma schlegelii false gharial LA zoo 03.jpg
Los Angeles Zoo
Skull at the Zoological Museum of the Zoological Institute of the Russian Academy of Sciences, St. Petersburg Tomistomaskull.JPG
Skull at the Zoological Museum of the Zoological Institute of the Russian Academy of Sciences, St. Petersburg

The false gharial is dark reddish-brown above with dark brown or black spots and cross-bands on the back and tail. Ventrals are grayish-white, with some lateral dark mottling. Juveniles are mottled with black on the sides of the jaws, body, and tail. The smooth and unornamented snout is extremely long and slender, parallel sided, with a length of 3.0 to 3.5 times the width at the base. All teeth are long and needle-like, interlocking on the insides of the jaws, and are individually socketed. The dorsal scales are broad at midbody and extend onto the sides of the body. The digits are webbed at the base. Integumentary sensory organs are present on the head and body scalation. Scales behind the head are frequently a slightly enlarged single pair. Some individuals bear a number of adjoining small keeled scales. Scalation is divided medially by soft granular skin. Three transverse rows of two enlarged nuchal scales are continuous with the dorsal scales, which consist of 22 transverse rows of six to eight scales, are broad at midbody and extend onto the sides of the body. Nuchal and dorsal rows equals a total of 22 to 23 rows. It has 18 double-crested caudal whorls and 17 single-crested caudal whorls. The flanks have one or two longitudinal rows of six to eight very enlarged scales on each side. [5]

The false gharial has one of the slimmest snouts of any living crocodilian, comparable to that of the slender-snouted crocodile and the freshwater crocodile in slenderness; only that of the gharial is noticeably slimmer. [6] Three mature males kept in captivity measured 3.6 to 3.9 m (12 to 13 ft) and weighed 190 to 210 kg (420 to 460 lb), while a female measured 3.27 m (10.7 ft) and weighed 93 kg (205 lb). [7] Females are up to 4 m (13 ft) long. [8] Males can grow up to 5 m (16 ft) in length and weigh up to 600 kg (1,300 lb). [9] The false gharial apparently has the largest skull of any extant crocodilian, in part because of the great length of the slender snout. Out of the eight longest crocodilian skulls from existing species that could be found in museums around the world, six of these belonged to false gharials. The longest crocodilian skull belonging to an extant species was of this species and measured 84 cm (33 in) in length, with a mandibular length of 104 cm (41 in). Most of the owners of these enormous skulls had no confirmed (or even anecdotal) total measurements for the animals, but based on the known skull-to-total length ratio for the species they would measure approximately 5.5 to 6.1 m (18 to 20 ft) in length. [10]

Three individuals ranging from 2.9 to 4.05 m (9 ft 6 in to 13 ft 3 in) in length and weighing from 79 to 255 kg (174 to 562 lb) had a bite force of 1,704–6,450  N (383–1,450  lbf ). [11]

Taxonomy

Compared to the Indian gharial. Skull & scutes - Gavialidae.jpg
Compared to the Indian gharial.

The scientific name Crocodilus (Gavialis) schlegelii was proposed by Salomon Müller in 1838 who described a specimen collected in Borneo. [12] In 1846, he proposed to use the name Tomistoma schlegelii, if it needs to be placed in a distinct genus. [13]

The genus Tomistoma potentially also contains several extinct species like T. cairense, T. lusitanicum, T. taiwanicus, and T. coppensi. However, these species may need to be reclassified to different genera as evidence suggests they may be paraphyletic. [14] [15]

Close-up of a false gharial at the Tierpark Berlin Tomistoma schlegelii.jpg
Close-up of a false gharial at the Tierpark Berlin

The false gharial's snout broadens considerably towards the base and so is more similar to those of true crocodiles than to the gharial (Gavialis gangeticus), whose osteology indicated a distinct lineage from all other living crocodilians. [6] However, although more morphologically similar to Crocodylidae based on skeletal features, recent molecular studies using DNA sequencing consistently indicate that the false gharial and by inference other related extinct forms traditionally viewed as belonging to the crocodylian subfamily Tomistominae actually belong to Gavialoidea and Gavialidae. [16] [17] [18] [19] [20] [21] [14] [22]

Fossil dorsal plates of "Tomistoma" calaritanus Gavialidae - Tomistoma calaritanus.JPG
Fossil dorsal plates of "Tomistoma" calaritanus

Fossils of extinct Tomistoma species have been found in deposits of Paleogene, Neogene, and Quaternary ages in Taiwan, Uganda, Italy, Portugal, Egypt and India, but nearly all of them are likely to be distinct genera due to older age compared to the false gharial. [23]

The below cladogram of the major living crocodile groups is based on molecular studies and shows the false gharial's close relationships: [17] [20] [21] [14] [22]

Crocodilia

The following cladogram shows the false gharial's placement within the Gavialidae; it is based on a tip dating study, for which morphological, DNA sequencing and stratigraphic data were analysed: [14]

Gavialoidea
(stem-based group)

Distribution and habitat

The false gharial is native to Peninsular Malaysia and the islands of Borneo and Sumatra; it is locally extinct in Singapore, Vietnam and Thailand. [2] It inhabits peat swamps and lowland swamp forests. [24]

Prior to the 1950s, Tomistoma occurred in freshwater ecosystems along the entire length of Sumatra east of the Barisan Mountains. The current distribution in eastern Sumatra has been reduced by 30-40% due to hunting, logging, fires, and agriculture. [25] The population has been estimated to comprise less than 2,500 mature individuals as of 2010. [24]

Ecology and behaviour

Diet

Until recently, very little was known about the diet or behaviour of the false gharial in the wild. Details are slowly being revealed. In the past, the false gharial was thought to have a diet of only fish and very small vertebrates, but more recent evidence indicates that it has a generalist diet despite its narrow snout. In addition to fish and smaller aquatic animals, mature adults prey on larger vertebrates, including proboscis monkeys, long-tailed macaques, deer, water birds, and reptiles. [26] There is an eyewitness account of a false gharial attacking a cow in East Kalimantan. [24]

The false gharial may be considered an ecological equivalent to Neotropical crocodiles such as the Orinoco and American crocodiles, which both have slender snouts but a broad diet. [6]

Reproduction

The false gharial is a mound-nester. Females lay small clutches of 13–35 eggs per nest and appear to produce the largest eggs of living crocodilians. They attain sexual maturity at a length of around 2.5 to 3 m (8 ft 2 in to 9 ft 10 in), which is large compared to other crocodilians. [25] Courtship coincides with periods of rainfall in November to February and from April to June. [7]

Conflict

In 2008, a 4-m female false gharial attacked and ate a fisherman in central Kalimantan; his remains were found in the gharial's stomach. This was the first verified fatal human attack by a false gharial. [26] However, by 2012, at least two more verified fatal attacks on humans by false gharials had occurred indicating perhaps an increase of human-false gharial conflict possibly correlated to the decline of habitat, habitat quality, and natural prey numbers. [27]

Threats

Juveniles at the Bronx Zoo, with an Arrau turtle. Juvenile false gharials (Tomistoma schlegelii) with an Arrau turtle (Podocnemis expansa) (cropped).jpg
Juveniles at the Bronx Zoo, with an Arrau turtle.

The false gharial is threatened by habitat loss in most of its range due to the drainage of freshwater swamps and conversion for commercial plantation of oil palms. [2] It is also hunted for its skin and meat, and its eggs are often harvested for human consumption. [26] Population surveys carried out in the mid 2000s indicated that the distribution of individuals is spotty and disconnected, with a risk of genetic isolation. [28] Some population units in unprotected areas do not bear viable breeding adults. [29]

Conservation

The false gharial is listed on CITES Appendix I. [2]

Steps have been taken by the Malaysian and Indonesian governments to prevent its extinction in the wild. There are reports of some populations rebounding in Indonesia, yet with this slight recovery, mostly irrational fears of attacks have surfaced amongst the local human population. [26]

Related Research Articles

<span class="mw-page-title-main">Gavialinae</span> Subfamily of gharial crocodylians

Gavialinae is a subfamily of large semiaquatic crocodilian reptiles, resembling crocodiles, but with much thinner snouts. Gavialinae is one of the two major subfamilies within the family Gavialidae - the other being the subfamily Tomistominae, which contains the false gharial and extinct relatives.

<span class="mw-page-title-main">Gavialidae</span> Family of gharial crocodylians

Gavialidae is a family of large semiaquatic crocodilians with elongated, narrow snouts. Gavialidae consists of two living species, the gharial and the false gharial, both occurring in Asia. Many extinct members are known from a broader range, including the recently extinct Hanyusuchus. Gavialids are generally regarded as lacking the jaw strength to capture the large mammalian prey favoured by crocodiles and alligators of similar size so their thin snout is best used to catch fish, however the false gharial has been found to have a generalist diet with mature adults preying upon larger vertebrates, such as ungulates.

<i>Gavialis</i> Genus of reptiles

Gavialis is a genus of crocodylians that includes the living gharial Gavialis gangeticus and one known extinct species, Gavialis bengawanicus.G. gangeticus comes from the Indian Subcontinent, while G. bengawanicus is known from Java. Gavialis likely first appeared in the Indian Subcontinent in the Pliocene and dispersed into the Malay Archipelago through a path called the Siva–Malayan route in the Quaternary. Remains attributed to Gavialis have also been found on Sulawesi and Woodlark Island east of the Wallace Line, suggesting a prehistoric lineage of Gavialis was able to traverse marine environments and reach places possibly as far as western Oceania.

<span class="mw-page-title-main">Gharial</span> Crocodilian native to the Indian subcontinent

The gharial, also known as gavial or fish-eating crocodile, is a crocodilian in the family Gavialidae and among the longest of all living crocodilians. Mature females are 2.6 to 4.5 m long, and males 3 to 6 m. Adult males have a distinct boss at the end of the snout, which resembles an earthenware pot known as a ghara, hence the name "gharial". The gharial is well adapted to catching fish because of its long, narrow snout and 110 sharp, interlocking teeth.

<i>Tomistoma</i> Genus of crocodilians

Tomistoma is a genus of gavialid crocodilians. They are noted for their long narrow snouts used to catch fish, similar to the gharial. Tomistoma contains one extant (living) member, the false gharial, as well as potentially several extinct species: T. cairense, T. lusitanicum and T. coppensi. Previously assigned extinct species known from fossils are reclassified as different genera such as Eogavialis, Toyotamaphimeia and Sutekhsuchus.

<i>Toyotamaphimeia</i> Extinct genus of reptiles

Toyotamaphimeia is a genus of extinct gavialid crocodylian which lived in Japan and Taiwan during the Middle Pleistocene. A specimen recovered in 1964 at Osaka University during the construction of a new science building has been dated to around 430–380 thousand years old based on the stratum in which it was found. Toyotamaphimeia was a fairly large crocodylian measuring approximately 6.3–7.3 metres (21–24 ft) long. Two species are named, T. machikanensis from Japan and T. taiwanicus from Taiwan, both originally described as members of the genus Tomistoma.

<i>Gavialosuchus</i> Extinct genus of reptiles

Gavialosuchus is an extinct genus of gavialoid crocodylian from the early Miocene of Europe. Currently only one species is recognized, as a few other species of Gavialosuchus have since been reclassified to other genera.

Dollosuchoides, colloquially known as the Crocodile of Maransart, is an extinct monospecific genus of gavialoid crocodilian, traditionally regarded as a member of the subfamily Tomistominae. Fossils have been found in the Brussel Formation of Maransart, Belgium and date back to the middle Eocene.

<i>Eogavialis</i> Extinct genus of reptiles

Eogavialis is an extinct genus of eusuchian crocodylomorph, usually regarded as a gavialoid crocodylian. It superficially resembles Tomistoma schlegelii, the extant false gharial, and consequently material from the genus was originally referred to Tomistoma. Indeed, it was not until 1982 that the name Eogavialis was constructed after it was realised that the specimens were from a more basal form.

<i>Kentisuchus</i> Extinct genus of reptiles

Kentisuchus is an extinct genus of gavialoid crocodylian, traditionally regarded as a member of the subfamily Tomistominae. Fossils have been found from England and France that date back to the early Eocene. The genus has also been recorded from Ukraine, but it unclear whether specimens from Ukraine are referable to Kentisuchus.

Maroccosuchus zennaroi is an extinct gavialoid crocodylian from the Early Eocene of Morocco, traditionally regarded as a member of the subfamily Tomistominae.

Paratomistoma is an extinct monospecific genus of gavialoid crocodylian. It is based on the holotype specimen CGM 42188, a partial posterior skull and lower jaw discovered at Wadi Hitan, Egypt, in Middle Eocene-age rocks of the Gehannam Formation. The skull is unfused but considered morphologically mature. Paratomistoma was named in 2000 by Christopher Brochu and Philip Gingerich; the type species is P. courti in honor of Nicholas Court, who found CGM 42188. They performed a phylogenetic analysis and found Paratomistoma to be a derived member of Tomistominae, related to the false gharial. It may have been a marine or coastal crocodilian.

<i>Penghusuchus</i> Extinct genus of reptiles

Penghusuchus is an extinct genus of gavialid crocodylian. It is known from a skeleton found in Middle to Upper Miocene rocks of Penghu Island, off Taiwan. The taxon was described in 2009 by Shan and colleagues; the type species is P. pani. It may be related to two other fossil Asian gavialids: Toyotamaphimeia machikanensis of Japan and Hanyusuchus sinensis of South China. It was a medium-sized gavialid with an estimated total length of 4.5 metres (15 ft).

Gryposuchinae is an extinct subfamily of gavialid crocodylians. Gryposuchines lived mainly in the Miocene of South America. However, "Ikanogavialis" papuensis may have survived more recently, into the Late Pleistocene/Holocene. Most were long-snouted coastal forms. The group was named in 2007 and includes genera such as Gryposuchus and Aktiogavialis, although a 2018 study indicates that the group might be paraphyletic and rather an evolutionary grade towards the gharial.

<span class="mw-page-title-main">Gavialoidea</span> Superfamily of large reptiles

Gavialoidea is one of three superfamilies of crocodylians, the other two being Alligatoroidea and Crocodyloidea. Although many extinct species are known, only the gharial Gavialis gangeticus and the false gharial Tomistoma schlegelii are alive today, with Hanyusuchus having become extinct in the last few centuries.

<span class="mw-page-title-main">Tomistominae</span> Subfamily of reptiles

Tomistominae is a subfamily of crocodylians that includes one living species, the false gharial. Many more extinct species are known, extending the range of the subfamily back to the Eocene epoch. In contrast to the false gharial, which is a freshwater species that lives only in southeast Asia, extinct tomistomines had a global distribution and lived in estuaries and along coastlines.

<span class="mw-page-title-main">Brevirostres</span> Taxon of reptiles

Brevirostres is a paraphyletic group of crocodilians that included alligatoroids and crocodyloids. Brevirostres are crocodilians with small snouts, and are distinguished from the long-snouted gharials. It is defined phylogenetically as the last common ancestor of Alligator mississippiensis and Crocodylus niloticus and all of its descendants. This classification was based on morphological studies primarily focused on analyzing skeletal traits of living and extinct fossil species, and placed the gharials outside the group due to their unique skull structure, and can be shown in the simplified cladogram below:

Tomistoma cairense is an extinct species of gavialoid crocodilian from the Lutetian stage of the Eocene era. It lived in North East Africa, especially Egypt. Remains of T. cairense have been found in the Mokattam Formation, in Mokattam, Egypt. Tomistoma cairense did not have a Maxilla process within their lacrimal gland, whereas all extant (living) crocodilians do.

Portugalosuchus is an extinct genus of eusuchian crocodyliform that was possibly a basal crocodylian – if so then it would be the oldest known crocodylian to date. The type species is P. azenhae, described in 2018, and it is known from the Late Cretaceous (Cenomanian)-aged Tentugal Formation in Portugal. A 2021 morphological study recovered Portugalosuchus within Crocodylia as a member of Gavialidae closely related to similar "thoracosaurs", while also noting that it might also possibly be outside of Crocodylia completely. A 2022 tip dating analysis incorporating both morphological and DNA data placed Portugalosuchus outside of Crocodylia, as the sister taxon of the family Allodaposuchidae. A cladogram simplified after that analysis is shown below:

<i>Sutekhsuchus</i> Genus of gharial

Sutekhsuchus is a species of gavialine crocodilian from the Miocene of Libya and Egypt. While this species was originally described as a species of the genus Tomistoma, which includes the modern false gharial, later studies have shown that it was actually a much more derived gavialoid closely related to the Kenyan Eogavialis andrewsi. Since it initially "deceived" paleontologists, it was named for the Egyptian god of deception Sutekh. It once inhabited the slow-moving rivers, estuaries and lagoons of what is now Gebel Zelten and Wadi Moghra, environments it shared with a variety of other crocodilians including the narrow-snouted Euthecodon and the robust Rimasuchus. Only a single species is currently assigned to Sutekhsuchus, the type species S. dowsoni.

References

  1. Rio, J.P. & Mannion, P.D. (2021). "Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem". PeerJ . 9: e12094. doi: 10.7717/peerj.12094 . PMC   8428266 . PMID   34567843.
  2. 1 2 3 4 5 6 Shaney, K.; Shwedick, B.; Simpson, B.K.; Pine, A.; Sideleau, B. & Stevenson, C. (2023). "Tomistoma schlegelii". IUCN Red List of Threatened Species . 2023: e.T21981A214287051. Retrieved 11 December 2023.
  3. Müller, S. (1838). "Waarnemingen over de Indische Krokodillen en Beschrijving van eene nieuwe Soort". Tijdschrift voor Natuurlijke Geschiedenis en Physiologie (in Dutch). 5: 61–87.
  4. Beolens, B.; Watkins, M. & Grayson, M. (2011). "Tomistoma schlegelii". The Eponym Dictionary of Reptiles. Baltimore: Johns Hopkins University Press. p. 235. ISBN   978-1-4214-0135-5.
  5. Brazaitis, P. (2001) A Guide to the Identification of the Living Species of Crocodilians. Science Resource Center, Wildlife Conservation Society
  6. 1 2 3 Piras, P.; Colangelo, P.; Adams, D. C.; Buscalioni, A.; Cubo, J.; Kotsakis, T. & Raia, P. (2010). "The GavialisTomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships". Evolution & Development. 12 (6): 568−579. doi:10.1111/j.1525-142X.2010.00442.x. PMID   21040423. S2CID   8231693.
  7. 1 2 Mathew, A.; Ganesan, M.; Majid, R. A. & Beastall, C. (2011). Breeding of False Gharial, Tomistoma schlegelii, at Zoo Negara, Malaysia (PDF). Zoo Negara. Archived from the original (PDF) on 2018-01-27. Retrieved 2012-06-13.
  8. Milàn, J. & Hedegaard, R. (2010). "Interspecific variation in tracks and trackways from extant crocodylians". New Mexico Museum of Natural History and Science Bulletin. 51: 15.
  9. Ahmad, A. A.; Dorrestein, G. M.; Oh, S. J. W. Y.; Hsu, C. D. (2017). "Multi-organ metastasis of fibrolamellar hepatocellular carcinoma in a Malayan Gharial (Tomistoma schlegelii)". Journal of Comparative Pathology. 157 (2): 80–84. doi:10.1016/j.jcpa.2017.06.007. PMID   28942308.
  10. Whitaker, R. & Whitaker, N. (2008). "Who's got the biggest?" (PDF). Crocodile Specialist Group Newsletter 27 (4): 26−30.
  11. Erickson, G. M.; Gignac, P. M.; Steppan, S. J.; Lappin, A. K.; Vliet, K. A.; Brueggen, J. A.; Inouye, B. D.; Kledzik, D. & Webb, G. J. W. (2012). "Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation". PLOS ONE. 7 (3): e31781. Bibcode:2012PLoSO...731781E. doi: 10.1371/journal.pone.0031781 . PMC   3303775 . PMID   22431965.
  12. Müller, S. (1838). "Waarnemingen over de Indische Krokodilen en beschrijving eene nieuwe soort". Tijdschrift Vorr Naturrlijke Geschiendes en Physiologie. 5: 61–87.
  13. Müller, S. (1846). "Über den Charakter der Thierwelt auf den Inseln des indischen Archipels, ein Beitrag zur Naturgeschichte". Archiv für Naturgeschichte. 12: 109–128.
  14. 1 2 3 4 Lee, M. S. Y.; Yates, A. M. (2018). "Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil". Proceedings of the Royal Society B . 285 (1881). doi: 10.1098/rspb.2018.1071 . PMC   6030529 . PMID   30051855.
  15. Iijima, M.; Momohara, A.; Kobayashi, Y.; Hayashi, S.; Ikeda, T.; Taruno, H.; Watanabe, K.; Tanimoto, M.; Furui, S. (2018). "Toyotamaphimeia cf. machikanensis (Crocodylia, Tomistominae) from the Middle Pleistocene of Osaka, Japan, and crocodylian survivorship through the Pliocene-Pleistocene climatic oscillations". Palaeogeography, Palaeoclimatology, Palaeoecology . 496: 346–360. Bibcode:2018PPP...496..346I. doi:10.1016/j.palaeo.2018.02.002.
  16. Densmore, L. D.; Owen, R. D. (1989). "Molecular Systematics of the Order Crocodilia". American Zoologist . 29 (3): 831–841. doi: 10.1093/icb/29.3.831 .
  17. 1 2 Harshman, J.; Huddleston, C. J.; Bollback, J. P.; Parsons, T. J.; Braun, M. J. (2003). "True and false gharials: A nuclear gene phylogeny of crocodylia". Systematic Biology . 52 (3): 386–402. doi: 10.1080/10635150309323 . PMID   12775527.
  18. Gatesy, J.; Amato, G.; Norell, M.; DeSalle, R.; H. C. (2003). "Combined support for wholesale taxic atavism in gavialine crocodylians". Systematic Biology. 52 (3): 403–422. doi: 10.1080/10635150309329 . PMID   12775528.
  19. Willis, R. E.; McAliley, L. R.; Neeley, E. D.; Densmore, L. D. (2007). "Evidence for placing the false gharial (Tomistoma schlegelii) into the family Gavialidae: Inferences from nuclear gene sequences". Molecular Phylogenetics and Evolution . 43 (3): 787–794. Bibcode:2007MolPE..43..787W. doi:10.1016/j.ympev.2007.02.005. PMID   17433721.
  20. 1 2 Gatesy, J.; Amato, G. (2008). "The rapid accumulation of consistent molecular support for intergeneric crocodylian relationships". Molecular Phylogenetics and Evolution. 48 (3): 1232–1237. Bibcode:2008MolPE..48.1232G. doi:10.1016/j.ympev.2008.02.009. PMID   18372192.
  21. 1 2 Erickson, G. M.; Gignac, P. M.; Steppan, S. J.; Lappin, A. K.; Vliet, K. A.; Brueggen, J. A.; Inouye, B. D.; Kledzik, D. & Webb, G. J. W. (2012). "Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation". PLOS One . 7 (3): e31781. Bibcode:2012PLoSO...731781E. doi: 10.1371/journal.pone.0031781 . PMC   3303775 . PMID   22431965.
  22. 1 2 Hekkala, E.; Gatesy, J.; Narechania, A.; Meredith, R.; Russello, M.; Aardema, M. L.; Jensen, E.; Montanari, S.; Brochu, C.; Norell, M.; Amato, G. (2021). "Paleogenomics illuminates the evolutionary history of the extinct Holocene 'horned' crocodile of Madagascar, Voay robustus". Communications Biology . 4 (1): 505. doi: 10.1038/s42003-021-02017-0 . PMC   8079395 . PMID   33907305.
  23. "Fossilworks: Tomistoma". Fossilworks. Archived from the original on 2021-12-12. Retrieved 2021-12-17.
  24. 1 2 3 Bezuijen, M.R.; Shwedick, B.M.; Sommerlad, R.; Stevenson, C.; Steubing, R.B. (2010). "Tomistoma Tomistoma schlegelii" (PDF). In Manolis, S.C.; Stevenson, C. (eds.). Crocodiles. Status Survey and Conservation Action Plan. Darwin: Crocodile Specialist Group. pp. 133−138.
  25. 1 2 Bezuijen, M.R.; Webb, G.J.W.; Hartoyo, P.; Samedi; Ramono, W.S.; Manolis, S.C. (1998). "The False Gharial (Tomistoma schlegelii) in Sumatra" (PDF). Crocodiles. Proceedings of the 14th Working Meeting of the Crocodile Specialist Group. Gland, Switzerland and Cambridge, UK: IUCN. The World Conservation Union. pp. 10–31.
  26. 1 2 3 4 Rachmawan, D.; Brend, S. (2009). "Human-Tomistoma interactions in central Kalimantan, Indonesian Borneo" (PDF). Crocodile Specialist Group Newsletter. 28 (1): 9–11.
  27. Sideleau, B.; Britton, A. R. C. (2012). "A preliminary analysis of worldwide crocodilian attacks" (PDF). Crocodiles. Proceedings of the 21st Working Meeting of the IUCN-SSC Crocodile Specialist Group. Gland, Switzerland: IUCN Crocodile Specialist Group. pp. 111–114.
  28. Stuebing, R. B.; Bezuijen, M. R.; Auliya, M. & Voris, H. K. (2006). "The current and historic distribution of Tomistoma schlegelii (the False Gharial) (Müller 1838) (Crocodylia, Reptilia)"". The Raffles Bulletin of Zoology. 54 (1): 181–197.
  29. Rödder, D.; Engler, J.O.; Bonke, R.; Weinsheimer, F. & Pertel, W. (2010). "Fading of the last giants: an assessment of habitat availability of the Sunda gharial Tomistoma schlegelii and coverage with protected areas". Aquatic Conservation: Marine and Freshwater Ecosystems. 20 (6): 678–684. Bibcode:2010ACMFE..20..678R. doi:10.1002/aqc.1137.