Front-engine, four-wheel-drive layout

Last updated

F4 layout Automotive diagrams 02C En.png
F4 layout

In automotive design, an F4, or front-engine, four-wheel drive (4WD) layout places the internal combustion engine at the front of the vehicle and drives all four roadwheels. This layout is typically chosen for better control on many surfaces, and is an important part of rally racing, as well as off-road driving. In terms of racing purposes, whether it be on-road or off-road, can be described as follows,

A team that pursues the Weak LS4WD architecture will minimize the development cost of the front-wheel drive system at the expense of having a larger rear powertrain. The Weak architecture produces a vehicle with a large powersplit between the front and rear powertrains, while the Strong architecture recommends a vehicle with more similar power and torque requirements for the front and rear. [1]

Most four-wheel-drive layouts are front-engined and are derivatives of earlier front-engine, rear-wheel drive, or front-engine, front-wheel drive designs. The first origins of it were introduced in the 1820s from steam coach builders Burstall & Hill. This was then re-created by many other manufactures, such as "British engineer Joseph Diplock patented a four-wheel-drive system for a traction engine, while in Vienna, Austria, Ferdinand Porsche developed an electric vehicle that also had all wheels driven, with an electric motor at each corner, as early as 1899". This layout is designed for off road vehicles to have the most traction in strenuous situations without losing too much cargo space at the same time. [2] However, the 1903 Spyker 60 HP was the first official[ clarification needed ] car built with an F4 drive layout.

This layout is also the drive train of choice for off-road pickup trucks and SUVs. It allows these vehicles to get the most traction without sacrificing cargo or passenger room. Part-time four-wheel drive vehicles frequently have a transfer case and no center differential, meaning, in many cases, the 4WD mode does not allow any difference in front and rear axle speeds. For normal road driving, these vehicles are shifted into 2WD mode, to prevent damage to the transfer case. Full-time four-wheel drive systems, on the other hand, cannot do without some kind of center differential. [3] The purpose of four-wheel drive is to maintain optimal traction when manually selected. A vehicle has four-wheel drive when the front and rear driveshafts can be locked together to move at the same speed and send the same amount of torque to all four wheels. [4]

Several four-wheel-drive vehicles have been built without a drive shaft between the front combustion engine and rear wheels; instead the rear wheels receive power and torque from a rear electric motor. This setup has been mainly used by hybrid electric vehicles, although some conventional vehicles had also adopted the system. [5]

Examples

Related Research Articles

A traction control system (TCS), also known as ASR, is typically a secondary function of the electronic stability control (ESC) on production motor vehicles, designed to prevent loss of traction of the driven road wheels. TCS is activated when throttle input and engine power and torque transfer are mismatched to the road surface conditions.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

Four-wheel drive, also called 4×4 or 4WD, refers to a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Quattro (four-wheel-drive system)</span> Sub-brand by Audi

Quattro is the trademark used by the automotive brand Audi to indicate that all-wheel drive (AWD) technologies or systems are used on specific models of its automobiles.

<span class="mw-page-title-main">Front-engine, front-wheel-drive layout</span> Term used in automotive technology

In automotive design, a front-engine, front-wheel-drive (FWD) layout, or FF layout, places both the internal combustion engine and driven roadwheels at the front of the vehicle.

<span class="mw-page-title-main">Transfer case</span> Drivetrain used in four-wheel drive vehicles

A transfer case is a part of the drivetrain of four-wheel-drive, all-wheel-drive, and other multiple powered axle vehicles. The transfer case transfers power from the transmission to the front and rear axles by means of drive shafts. It also synchronizes the difference between the rotation of the front and rear wheels(only high-speed 4wd-Awd systems), and may contain one or more sets of low range gears for off-road use.

<span class="mw-page-title-main">4Matic</span> All-wheel-drivetrain developed by Mercedes-Benz

4Matic is the marketing name of an all-wheel drive system developed by Mercedes-Benz. It is designed to increase traction in slippery conditions. With the introduction of the 2017 E 63 S sedan, Mercedes-AMG announced a performance-oriented variant of the system called AMG Performance 4MATIC+.

<span class="mw-page-title-main">Drive wheel</span> Any wheel of a motor vehicle that transmits force

A drive wheel is a wheel of a motor vehicle that transmits force, transforming torque into tractive force from the tires to the road, causing the vehicle to move. The powertrain delivers enough torque to the wheel to overcome stationary forces, resulting in the vehicle moving forwards or backwards.

ATTESA is a four-wheel drive system used in some automobiles produced by the Japanese automaker Nissan, including some models under its luxury marque Infiniti.

Jeep uses a variety of four-wheel drive systems on their vehicles. These range from basic part-time systems that require the driver to move a control lever to send power to four wheels, to permanent four-wheel systems that monitor and sense traction needs at all four wheels automatically under all conditions.

Super Handling-All Wheel Drive (SH-AWD) is a full-time, fully automatic, all-wheel drive traction and handling system, which combines front-rear torque distribution control with independently regulated torque distribution to the left and right rear wheels. This way the system freely distributes the optimum amount of torque to all four wheels according to the driving conditions." The system was announced in April 2004, and was introduced in the North American market in the second generation 2005 model year Acura RL, and in Japan as the fourth generation Honda Legend.

The powertrain layout of a motorised vehicle such as a car is often defined by the location of the engine and drive wheels.

<span class="mw-page-title-main">Super Select</span>

Super Select is the brand name of a four-wheel drive system produced by Mitsubishi Motors, used worldwide except for North America, where it was initially known as Active-Trac. It was first introduced in 1991 with the then-new second generation of the Mitsubishi Pajero.

<span class="mw-page-title-main">Mid-engine, four-wheel-drive layout</span>

In automotive design, an M4, or Mid-engine, Four-wheel-drive layout places the internal combustion engine in the middle of the vehicle, between both axles and drives all four road wheels.

Torque vectoring is a technology employed in automobile differentials that has the ability to vary the torque to each half-shaft with an electronic system; or in rail vehicles which achieve the same using individually motored wheels. This method of power transfer has recently become popular in all-wheel drive vehicles. Some newer front-wheel drive vehicles also have a basic torque vectoring differential. As technology in the automotive industry improves, more vehicles are equipped with torque vectoring differentials. This allows for the wheels to grip the road for better launch and handling.

<span class="mw-page-title-main">Jeep Liberty (KJ)</span> Motor vehicle

The Jeep Liberty (KJ), or Jeep Cherokee (KJ) outside North America, is a compact SUV that was produced by Jeep from 2002 to 2007. Introduced in May 2001 as a replacement for the Cherokee (XJ), the unibody Liberty was priced between the Wrangler and Grand Cherokee. It was the smallest of the 4-door Jeep SUVs up until the car platform based 4-door Compass and Patriot arrived for 2007.

<span class="mw-page-title-main">Drivetrain</span> Group of components that deliver power to the driving wheels

A drivetrain is the group of components that deliver mechanical power from the prime mover to the driven components. In automotive engineering, the drivetrain is the components of a motor vehicle that deliver power to the drive wheels. This excludes the engine or motor that generates the power. In marine applications, the drive shaft will drive a propeller, thruster, or waterjet rather than a drive axle, while the actual engine might be similar to an automotive engine. Other machinery, equipment and vehicles may also use a drivetrain to deliver power from the engine(s) to the driven components.

<span class="mw-page-title-main">All-wheel drive</span> Powertrain providing power to all its wheels for use primarily on paved surfaces

An all-wheel drive vehicle is one with a powertrain capable of providing power to all its wheels, whether full-time or on-demand.

E-Four, eFour, AWD-i, or AWD-e was developed by Toyota. Front wheels are powered directly by the hybrid powertrain, rear wheels are powered by a dedicated electric motor with its own power control unit, reduction gear and differential. Amount of torque transferred to the rear wheels is automatically adjusted by the vehicle's electronic control unit according to driving conditions. E-Four also adds additional regenerative braking. In North America, Toyota uses the term AWD-i. There is no drive shaft between the front combustion engine and rear wheels. The rear wheels only receive power and torque from the rear electric motor(s).

This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.

In automotive design, dual-motor, four-wheel-drive layout is mainly used by battery electric vehicles by placing electric motors on both front and rear axles and drives all four roadwheels, creating a four-wheel drive layout. This layout is made possible by the small size of electric motors compared to internal combustion engines, allowing it to be placed in multiple locations. It also eliminates the need of a drive shaft that are commonly used by conventional four-wheel drive vehicles to create space for batteries that are commonly mounted on the floor of electric vehicles.

References

  1. Owen, Elliot Douglas (June 2018). The Benefits of Four-Wheel Drive for a High-Performance FSAE Electric Racecar (PDF) (Thesis). Massachusetts Institute of Technology. OCLC   1080309406 . Retrieved 2 October 2021.
  2. "The Origins of Four-Wheel Drive". Hemmings Motor News . December 2019. Retrieved 5 May 2021.
  3. "How 4WD, FWD, RWD and AWD all Work?". Car Decent. 16 February 2023. Retrieved 1 April 2023.
  4. Markovich, Tony (17 July 2020). "AWD vs. 4WD: Know the Differences". The Drive. Retrieved 5 May 2021.
  5. "Which Hybrids Have All-Wheel Drive?". AutoTrader.ca. 26 August 2020. Retrieved 23 April 2022.