Front-engine, front-wheel-drive layout

Last updated
FF transversely mounted engine layout Automotive diagrams 10 En.png
FF transversely mounted engine layout
FF longitudinally mounted engine layout Automotive diagrams 08 En.png
FF longitudinally mounted engine layout

In automotive design, a front-engine, front-wheel-drive (FWD) layout, or FF layout, places both the internal combustion engine and driven roadwheels at the front of the vehicle.

Contents

Usage implications

Front-engine, rear-wheel-drive layout Automotive diagrams 01 En.png
Front-engine, rear-wheel-drive layout

Historically, this designation was used regardless of whether the entire engine was behind the front axle line. In recent times, the manufacturers of some cars have added to the designation with the term front-mid which describes a car in which the engine is in front of the passenger compartment but behind the front axle. The engine positions of most pre–World-War-II cars are front-mid or on the front axle.

This layout is the most traditional form and remains a popular, practical design. The engine, which takes up a great deal of space, is packaged in a location passengers and luggage typically would not use. The main deficit is weight distribution—the heaviest component is at one end of the vehicle. Car handling is not ideal, but usually predictable.

In contrast with the front-engine, rear-wheel-drive layout (RWD), the FWD layout eliminates the need for a central tunnel or a higher chassis clearance to accommodate a driveshaft providing power to the rear wheels. Like the rear-engine, rear-wheel-drive layout (RR) and rear mid-engine, rear-wheel-drive layout (RMR) layouts, it places the engine over the drive wheels, improving traction in many applications. As the steered wheels are also the driven wheels, FWD cars are generally considered superior to RWD cars in conditions in which there is low traction such as snow, mud, gravel or wet tarmac. When hill climbing in low-traction conditions RR is considered the best two-wheel-drive layout, primarily due to the shift of weight to the rear wheels when climbing. The cornering ability of an FWD vehicle is generally better, because the engine is placed over the steered wheels. [1] However, as the driven wheels have the additional demands of steering, if a vehicle accelerates quickly, less grip is available for cornering, which can result in understeer. [2] High-performance vehicles rarely use the FWD layout because weight is transferred to the rear wheels under acceleration, while unloading the front wheels and sharply reducing their grip, effectively capping the amount of power which could realistically be utilized; in addition, the high power of high-performance cars can result in torque steer. Electronic traction control can avoid wheel-spin but largely negates the benefit of extra power. [3] This was a reason for the adoption of the all-wheel-drive quattro system in the high performance Jensen FF and Audi Quattro road cars.

Historical arrangements

Early cars using the FWD layout include the 1925 Alvis, 1929 Cord L-29, 1931 DKW F1, the 1948 Citroën 2CV, 1949 Saab 92, the 1957 Trabant P50, and the 1959 Mini. In the 1980s, the traction and packaging advantages of this layout caused many compact and mid-sized vehicle makers to adopt it in the US. Most European and Japanese manufacturers switched to front wheel drive for the majority of their cars in the 1960s and 1970s, the last to change being VW, Ford of Europe, and General Motors (Vauxhall - UK and Opel - Germany). Toyota was the last Japanese company to switch in the early 1980s. BMW, focused on luxury vehicles, however retained the rear-wheel-drive layout in even their smaller cars, [4] though their MINI marque are FWD.

There are four different arrangements for this basic layout, depending on the location of the engine, which is the heaviest component of the drivetrain.

Mid-engine / Front-wheel drive

The earliest front wheel drive cars were mid-engine, front-wheel-drive layout (MF). The engine was mounted longitudinally (fore-and-aft, or north–south) behind the wheels, with the transmission ahead of the engine and differential at the very front of the car. With the engine so far back, the weight distribution of such cars as the Cord L-29 was not ideal; the driven wheels did not carry a large enough proportion of weight for good traction and handling. The 1934 Citroën Traction Avant solved the weight distribution issue by placing the transmission at the front of the car with the differential between it and the engine. Combined with the car's low slung unibody design, this resulted in handling which was remarkable for the era. Renault is the most recent user of this format - having used it on the Renault 4, and the first generation Renault 5, but it has since fallen out of favor since it encroaches into the interior space.

Longitudinally mounted front-engine and front-wheel drive

A 1975 Alfa Romeo Alfasud Sprint Veloce using a Longitudinally mounted front-engine and front-wheel drive. Alfasud av.jpg
A 1975 Alfa Romeo Alfasud Sprint Veloce using a Longitudinally mounted front-engine and front-wheel drive.

The 1946 Panhard Dyna X, designed by Jean-Albert Grégoire, had the engine longitudinally in front of the front wheels, with the transmission behind the engine and the differential at the rear of the assembly. This arrangement, used by Panhard until 1967, potentially had a weight distribution problem analogous to that of the Cord L29 mentioned above. However, the Panhard's air-cooled flat twin engine was very light, and mounted low down with a low centre of gravity reducing the effect. The air-cooled flat twin engine of the Citroën 2CV was also mounted very low, in front of the front wheels, with the transmission behind the axle line and the differential between the two. This became quite popular; cars using this layout included the German Ford Taunus 12M and the Lancia Flavia and Fulvia. This is the standard configuration of Audi and Subaru front-wheel-drive vehicles. In 1979, Toyota introduced and launched their first front-wheel-drive car, the Tercel, and it had its engine longitudinally mounted, unlike most other front-wheel-drive cars on the market at that time. This arrangement continued also on the second-generation Tercel, until 1987, the third generation received a new, transversely mounted engine. Other front-wheel-drive Toyota models, such as Camry, and Corolla, had transversely mounted engines from the beginning on.

The 1966 Oldsmobile Toronado (along with its sister model the Cadillac Eldorado) used a novel arrangement which had the engine and transmission in a 'side-by-side' arrangement with power being transmitted between the two via a heavy-duty chain, and a specially designed intermediate driveshaft that passed under the engine sump. This family has the distinction of being the highest engine capacity (8.2 L) front-wheel-drive vehicles ever built. The Saab 99 and “classic” Saab 900 also used a similar arrangement. The Eagle Premier used a similar powertrain arrangement found in the Renault 21 and 25 – later becoming the basis for the Chrysler LH sedans produced until the 2004 model year.

Today, Audi is the most prominent user of this mechanical layout, having used it since the 1950s in its predecessor companies DKW and Auto Union, and it can be found in its larger models from the A4 upward. The latest evolution of the format in Audi's MLB platform attempts to address the long-standing drawback of uneven weight distribution. This is done by packaging the differential in front of the clutch, allowing the axle line to be further forward in relation to the rear face of the engine block.


Front-engine transversely mounted / Front-wheel drive

The bonnet on this original Mini is open, showing the transversely mounted engine that drives the front wheels. BMC Mini 021.jpg
The bonnet on this original Mini is open, showing the transversely mounted engine that drives the front wheels.

The first popular transverse engined FWD cars were the DKW 'Front' made from 1931, which had a twin cylinder two-stroke engine. Saab copied this design on their first car, the 1949 Saab 92. The Trabant in 1957 was also one of the only cars to have a transverse mounted engine, being a sort of DKW successor. This was a novelty, especially for a car being made in a communist country.

Issigonis's Mini of 1959 and related cars such as the Maxi, Austin 1100/1300 and Allegro had the four-cylinder inline water-cooled engine transversely mounted. The transmission was located in the sump below the crankshaft, with power transmitted by transfer gears. Other models that used the "transmission-in-sump" layout included the Datsun 100A (Cherry) and various applications of the PSA-Renault X-Type engine such as the Peugeot 104 and Renault 14. The 1955 Suzuki Suzulight also introduced a front engine with a transversely installed two-stroke twin-cylinder engine (using DKW technology) in a city car/ kei car application, based on the German Lloyd LP400.

Dante Giacosa's Autobianchi Primula of 1964, Fiat 128 and Fiat 127, put the transmission on one side of the transversely mounted engine, and doubled back the drivetrain to put the differential just behind the transmission, but offset to one side. Hence the driveshafts to the wheels are longer on one side than the other. This located the weight just a bit in front of the wheels. It is this system which dominates worldwide at present.

Front-wheel-drive vehicles tend to suffer from torque steer under heavy acceleration. [5] This is caused by differing drive shaft lengths which in turn results in different incident angles at the joints of the driveshaft. The farther these joints are articulate, the less effective they are at delivering torque to the wheels.

Front-wheel drive design characteristics

Front-wheel drive shafts

In front wheel drive vehicles, the drive shafts transfer the drive directly from the differential to the front wheels. A short inner stub shaft is splined to the differential side gear and an outer stub shaft is splined to the front wheel hub. Each stub shaft has a yoke, or housing, to accommodate a universal joint, at each end of a connecting intermediate shaft.

Universal joints let the shaft keep rotating while allowing for changes due to suspension movement, such as shaft length and horizontal angle, and shaft angle as the steering turns. Constant-velocity universal joints are normally used to transfer power smoothly between the components. The inner universal can be a plunge or tripod type joint. The tripod is splined to the intermediate shaft and held by a circlip. A ball, supported on needle roller bearings, is fitted to each post of the tripod, and these slide in a trunion inside the yoke. This caters for changes in shaft length and horizontal angle. The drive is transferred through the trunion and balls to rotate the shaft.

The outer universal joint allows greater angular changes but not changes in shaft length. It is normally a ball and cage type with an inner race splined to the intermediate shaft. An outer race is formed in the yoke. The cage retains the balls in location in grooves in both races. The balls transfer the drive from the shaft to the hub and allow for changes in horizontal angle and for a wide steering angle to be achieved. A flexible rubber boot fitted to each joint retains grease and keeps out dirt and moisture.

Where the differential is not located in the center line of the vehicle, an intermediate shaft can be fitted to maintain equal length drive shafts on each side. This keeps drive shaft angles equal on both sides and helps prevent steering irregularities and vibration. The outer end of the intermediate shaft is supported by a bearing secured to the transaxle case and a universal joint assists with alignment. In some cases a longer drive shaft is used on one side. A rubber dynamic damper may be fitted to absorb vibrations.

See also

Related Research Articles

<span class="mw-page-title-main">Axle</span> Central shaft for a rotating wheel or gear

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type of axle is referred to as a spindle.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

A four-wheel drive, also called 4×4 or 4WD, is a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Front-wheel drive</span> Automotive transmission where the engine drives the front wheels only

Front-wheel drive (FWD) is a form of engine and transmission layout used in motor vehicles, in which the engine drives the front wheels only. Most modern front-wheel-drive vehicles feature a transverse engine, rather than the conventional longitudinal engine arrangement generally found in rear-wheel-drive and four-wheel-drive vehicles.

<span class="mw-page-title-main">Quattro (four-wheel-drive system)</span> Sub-brand by Audi that designed for its all-wheel-drive cars

Quattro is the trademark used by the automotive brand Audi to indicate that all-wheel drive (AWD) technologies or systems are used on specific models of its automobiles.

<span class="mw-page-title-main">Rear-engine, rear-wheel-drive layout</span> Automotive design

In automotive design, an RR, or rear-engine, rear-wheel-drive layout places both the engine and drive wheels at the rear of the vehicle. In contrast to the RMR layout, the center of mass of the engine is between the rear axle and the rear bumper. Although very common in transit buses and coaches due to the elimination of the drive shaft with low-floor buses, this layout has become increasingly rare in passenger cars.

<span class="mw-page-title-main">Rear mid-engine, rear-wheel-drive layout</span> Car layout in automotive design

In automotive design, an RMR, or rear mid-engine, rear-wheel-drive layout is one in which the rear wheels are driven by an engine placed with its center of gravity in front of the rear axle, and thus right behind the passenger compartment. Nowadays more frequently called 'RMR', to acknowledge that certain sporty or performance focused front-engined cars are also "mid-engined", by having the main engine mass behind the front axle, RMR layout cars were previously just called MR, or mid-engine, rear-wheel-drive layout), because the nuance between distinctly front-engined vs. front mid-engined cars often remained undiscussed.

Rear-wheel drive (RWD) is a form of engine and transmission layout used in motor vehicles, in which the engine drives the rear wheels only. Until the late 20th century, rear-wheel drive was the most common configuration for cars. Most rear-wheel drive vehicles feature a longitudinally-mounted engine at the front of the car.

<span class="mw-page-title-main">Transaxle</span> Combined transmission, axle and differential in one assembly.

A transaxle is a single mechanical device which combines the functions of an automobile's transmission, axle, and differential into one integrated assembly. It can be produced in both manual and automatic versions.

<span class="mw-page-title-main">Mid-engine design</span> Automobile design in which the engine is placed between the front and rear axles

In automotive engineering, a mid-engine layout describes the placement of an automobile engine in front of the rear-wheel axles, but behind the front axle.

<span class="mw-page-title-main">Drive shaft</span> Mechanical component for transmitting torque and rotation

A drive shaft, driveshaft, driving shaft, tailshaft, propeller shaft, or Cardan shaft is a component for transmitting mechanical power, torque, and rotation, usually used to connect other components of a drivetrain that cannot be connected directly because of distance or the need to allow for relative movement between them.

<span class="mw-page-title-main">Transverse engine</span> Vehicle engine whose crankshaft axis is perpendicular to the direction of travel

A transverse engine is an engine mounted in a vehicle so that the engine's crankshaft axis is perpendicular to the direction of travel. Many modern front-wheel drive vehicles use this engine mounting configuration. Most rear-wheel drive vehicles use a longitudinal engine configuration, where the engine's crankshaft axis is parallel with the direction of travel, except for some rear-mid engine vehicles, which use a transverse engine and transaxle mounted in the rear instead of the front. Despite typically being used in light vehicles, it is not restricted to such designs and has also been used on armoured fighting vehicles to save interior space.

<span class="mw-page-title-main">Longitudinal engine</span> Internal combustion engine mounted with the crankshaft lengthwise

In automotive engineering, a longitudinal engine is an internal combustion engine in which the crankshaft is oriented along the long axis of the vehicle, from front to back. See also: transverse engine

Torque steer is the unintended influence of engine torque on the steering, especially in front-wheel-drive vehicles. For example, during heavy acceleration, the steering may pull to one side, which may be disturbing to the driver. The effect is manifested either as a tugging sensation in the steering wheel, or a veering of the vehicle from the intended path. Torque steer is directly related to differences in the forces in the contact patches of the left and right drive wheels. The effect becomes more evident when high torques are applied to the drive wheels because of a high overall reduction ratio between the engine and wheels, high engine torque, or some combination of the two. Torque steer is distinct from steering kickback.

ATTESA is a four-wheel drive system used in some automobiles produced by the Japanese automaker Nissan, including some models under its luxury marque Infiniti.

<span class="mw-page-title-main">Front-mid-engine, front-wheel-drive layout</span>

In automotive design, a front-mid-engine, front-wheel-drive layout is one in which the front road wheels are driven by an internal-combustion engine placed just behind them, in front of the passenger compartment.

The powertrain layout of a motorised vehicle such as a car is often defined by the location of the engine or motors and the drive wheels.

<span class="mw-page-title-main">Front-engine, four-wheel-drive layout</span> Automotive configuration

In automotive design, an F4, or front-engine, four-wheel drive (4WD) layout places the internal combustion engine at the front of the vehicle and drives all four roadwheels. This layout is typically chosen for better control on many surfaces, and is an important part of rally racing, as well as off-road driving. In terms of racing purposes, whether it be on-road or off-road, can be described as follows,

A team that pursues the Weak LS4WD architecture will minimize the development cost of the front-wheel drive system at the expense of having a larger rear powertrain. The Weak architecture produces a vehicle with a large powersplit between the front and rear powertrains, while the Strong architecture recommends a vehicle with more similar power and torque requirements for the front and rear.

<span class="mw-page-title-main">H-drive</span> Drivetrain for off-road vehicles

An H-drive drivetrain is a system used for heavy off-road vehicles with 6×6 or 8×8 drive to supply power to each wheel station.

The Audi R8 LMS Cup was a one-make sports car racing series by Audi based in Asia. Audi R8 LMS Cup cars were based on the Audi R8 LMS (GT3).

<span class="mw-page-title-main">Platform chassis</span>

A platform chassis is a form of vehicle frame / automobile chassis, constructed as a flat plate or platform, sometimes integrating a backbone or frame-structure with a vehicle's floor-pan.

References

  1. Hillier, Victor; Peter Coombes (2004). Fundamentals of motor vehicle technology. Nelson Thornes. p. 9. ISBN   978-0-7487-8082-2.
  2. "Engine & Driveline Layouts". Drivingfast.net. Archived from the original on 27 September 2016. Retrieved 6 January 2010.
  3. www.motortrend.com Archived 2011-07-18 at the Wayback Machine Road Test: Rear Drive vs. Front Drive vs. All-Wheel Driv
  4. "BMW Technology Guide: Rear wheel drive" . Retrieved 1 September 2016.
  5. "What the heck is torque steer?".

Further reading