Liddle's syndrome

Last updated
Liddle's syndrome
Liddle.svg
Diagram of the inheritance of the syndrome
Specialty Nephrology

Liddle's syndrome, also called Liddle syndrome, [1] is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. [1] Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretics (e.g. amiloride). It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008. [2]

Contents

Signs and symptoms

Children with Liddle syndrome are frequently asymptomatic. The first indication of the syndrome often is the incidental finding of hypertension during a routine physical exam. Because this syndrome is rare, it may only be considered by the treating physician after the child's hypertension does not respond to medications for lowering blood pressure.[ citation needed ]

Adults could present with nonspecific symptoms of low blood potassium, which can include weakness, fatigue, palpitations or muscular weakness (shortness of breath, constipation/abdominal distention or exercise intolerance). Additionally, long-standing hypertension could become symptomatic. [3]

Cause

This syndrome is caused by dysregulation of the epithelial sodium channel (ENaC) due to a genetic mutation at the 16p13-p12 locus. These channels are found on the surface of epithelial cells found in the kidneys, lungs, and sweat glands. The ENaC transports sodium ions from the adjacent lumen into the epithelial cells that line the lumen. The mutation changes a domain in the channel so it is no longer degraded correctly by the ubiquitin proteasome system. Specifically, the PY motif in the protein is deleted or altered so the E3 ligase (Nedd4) no longer recognizes the channel. This loss of ability to be degraded leads to high amounts of the channel being chronically present on the apical membrane of the epithelial cells that line the collecting ducts of the kidney. [4] This results in a hyperaldosteronism-like state, since aldosterone is typically responsible for creating and inserting these channels. The increased sodium resorption leads to increased resorption of water, and hypertension due to an increase in extracellular volume. [5]

Liddle syndrome is inherited in an autosomal dominant fashion. Autosomal dominant - en.svg
Liddle syndrome is inherited in an autosomal dominant fashion.

Diagnosis

Evaluation of a child with persistent high blood pressure usually involves analysis of blood electrolytes and an aldosterone level, as well as other tests. In Liddle's disease, the serum sodium is typically elevated, the serum potassium is reduced, [6] and the serum bicarbonate is elevated. These findings are also found in hyperaldosteronism, another rare cause of hypertension in children. Primary hyperaldosteronism (also known as Conn's syndrome), is due to an aldosterone-secreting adrenal tumor (adenoma) or adrenal hyperplasia. Aldosterone levels are high in hyperaldosteronism, whereas they are low to normal in Liddle syndrome. [5]

A genetic study of the ENaC sequences can be requested to detect mutations (deletions, insertions, missense mutations) and get a diagnosis. [7]

Treatment

The treatment is a potassium-sparing diuretic, such as amiloride, that directly blocks the sodium channel. [8] Potassium-sparing diuretics that are effective for this purpose include amiloride and triamterene; spironolactone is not effective because it acts by regulating aldosterone and Liddle syndrome does not respond to this regulation. Amiloride is the only treatment option that is safe in pregnancy. [9] Medical treatment usually corrects both the hypertension and the hypokalemia, and as a result these patients may not require any potassium replacement therapy.[ citation needed ]

Liddle syndrome resolves completely after kidney transplantation. [10]

History

It is named after Dr. Grant Liddle (1921–1989), an American endocrinologist at Vanderbilt University, who described it in 1963. [11] Liddle described the syndrome in a family of people exemplifying a heritable, autosomal dominant hypertension with low potassium, renin, and aldosterone. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Aldosterone</span> Mineralocorticoid steroid hormone

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure, and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

<span class="mw-page-title-main">Primary aldosteronism</span> Medical condition

Primary aldosteronism (PA), also known as primary hyperaldosteronism or Conn's syndrome, refers to the excess production of the hormone aldosterone from the adrenal glands, resulting in low renin levels and high blood pressure. This abnormality is caused by hyperplasia or tumors. Many experience fatigue, potassium deficiency and high blood pressure which may cause poor vision, confusion or headaches. Symptoms may also include: muscular aches and weakness, muscle spasms, low back and flank pain from the kidneys, trembling, tingling sensations, dizziness/vertigo, nocturia and excessive urination. Complications include cardiovascular disease such as stroke, myocardial infarction, kidney failure and abnormal heart rhythms.

<span class="mw-page-title-main">Hyperkalemia</span> Medical condition with excess potassium

Hyperkalemia is an elevated level of potassium (K+) in the blood. Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels above 5.5 mmol/L defined as hyperkalemia. Typically hyperkalemia does not cause symptoms. Occasionally when severe it can cause palpitations, muscle pain, muscle weakness, or numbness. Hyperkalemia can cause an abnormal heart rhythm which can result in cardiac arrest and death.

<span class="mw-page-title-main">Loop diuretic</span> Diuretics that act at the ascending limb of the loop of Henle in the kidney

Loop diuretics are diuretics that act on the Na-K-Cl cotransporter along the thick ascending limb of the loop of Henle in nephrons of the kidneys. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

<span class="mw-page-title-main">Amiloride</span> Medication

Amiloride, sold under the trade name Midamor among others, is a medication typically used with other medications to treat high blood pressure or swelling due to heart failure or cirrhosis of the liver. Amiloride is classified as a potassium-sparing diuretic. Amiloride is often used together with another diuretic, such as a thiazide or loop diuretic. It is taken by mouth. Onset of action is about two hours and it lasts for about a day.

<span class="mw-page-title-main">Gitelman syndrome</span> Medical condition

Gitelman syndrome (GS) is an autosomal recessive kidney tubule disorder characterized by low blood levels of potassium and magnesium, decreased excretion of calcium in the urine, and elevated blood pH. It is the most frequent hereditary salt-losing tubulopathy. Gitelman syndrome is caused by disease-causing variants on both alleles of the SLC12A3 gene. The SLC12A3 gene encodes the thiazide-sensitive sodium-chloride cotransporter, which can be found in the distal convoluted tubule of the kidney.

<span class="mw-page-title-main">Potassium-sparing diuretic</span> Drugs that cause diuresis without causing potassium loss in the urine and leading to hyperkalemia

Potassium-sparing diuretics refers to drugs that cause diuresis without causing potassium loss in the urine. They are typically used as an adjunct in management of hypertension, cirrhosis, and congestive heart failure. The steroidal aldosterone antagonists can also be used for treatment of primary hyperaldosteronism. Spironolactone, a steroidal aldosterone antagonist, is also used in management of female hirsutism and acne from PCOS or other causes.

<span class="mw-page-title-main">Hypoaldosteronism</span> Medical condition

Hypoaldosteronism is an endocrinological disorder characterized by decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.

<span class="mw-page-title-main">Metabolic alkalosis</span> Medical condition

Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations. The condition typically cannot last long if the kidneys are functioning properly.

<span class="mw-page-title-main">Hyperaldosteronism</span> Hormonal disorder

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).

<span class="mw-page-title-main">Apparent mineralocorticoid excess syndrome</span> Medical condition

Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension, hypernatremia and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.

<span class="mw-page-title-main">Antimineralocorticoid</span> Drug class

An antimineralocorticoid, also known as a mineralocorticoid receptor antagonist or aldosterone antagonist, is a diuretic drug which antagonizes the action of aldosterone at mineralocorticoid receptors. This group of drugs is often used as adjunctive therapy, in combination with other drugs, for the management of chronic heart failure. Spironolactone, the first member of the class, is also used in the management of hyperaldosteronism and female hirsutism. Most antimineralocorticoids, including spironolactone, are steroidal spirolactones. Finerenone is a nonsteroidal antimineralocorticoid.

<span class="mw-page-title-main">Bartter syndrome</span> Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

Pseudohyperaldosteronism is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure (hypertension), low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. Causes include genetic disorders, acquired conditions, metabolic disorders, and dietary imbalances including excessive consumption of licorice. Confirmatory diagnosis depends on the specific root cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers.

<span class="mw-page-title-main">Pseudohypoaldosteronism</span> Medical condition

Pseudohypoaldosteronism (PHA) is a condition that mimics hypoaldosteronism. However, the condition is due to a failure of response to aldosterone, and levels of aldosterone are actually elevated, due to a lack of feedback inhibition.

<span class="mw-page-title-main">SCNN1B</span> Protein-coding gene in the species Homo sapiens

The SCNN1B gene encodes for the β subunit of the epithelial sodium channel ENaC in vertebrates. ENaC is assembled as a heterotrimer composed of three homologous subunits α, β, and γ or δ, β, and γ. The other ENAC subunits are encoded by SCNN1A, SCNN1G, and SCNN1D.

<span class="mw-page-title-main">SCNN1G</span> Protein-coding gene in the species Homo sapiens

The SCNN1G gene encodes for the γ subunit of the epithelial sodium channel ENaC in vertebrates. ENaC is assembled as a heterotrimer composed of three homologous subunits α, β, and γ or δ, β, and γ. The other ENAC subunits are encoded by SCNN1A, SCNN1B, and SCNN1D.

In physiology, aldosterone escape is a term that has been used to refer to two distinct phenomena involving aldosterone that are exactly opposite each other:

  1. Escape from the sodium-retaining effects of excess aldosterone in primary hyperaldosteronism, manifested by volume and/or pressure natriuresis.
  2. The inability of ACE inhibitor therapy to reliably suppress aldosterone release, for example, in patients with heart failure or diabetes, usually manifested by increased salt and water retention. This latter sense may rather be termed refractory hyperaldosteronism.

Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland, or due to something outside of the adrenal gland causing it to secrete excessive aldosterone.

<span class="mw-page-title-main">Diuretic</span> Substance that promotes the production of urine

A diuretic is any substance that promotes diuresis, the increased production of urine. This includes forced diuresis. A diuretic tablet is sometimes colloquially called a water tablet. There are several categories of diuretics. All diuretics increase the excretion of water from the body, through the kidneys. There exist several classes of diuretic, and each works in a distinct way. Alternatively, an antidiuretic, such as vasopressin, is an agent or drug which reduces the excretion of water in urine.

References

  1. 1 2 Young, William. "Genetic disorders of the collecting tubule sodium channel: Liddle's syndrome and pseudohypoaldosteronism type 1". UpToDate.
  2. Rossier BC, Schild L (October 2008). "Epithelial sodium channel: mendelian versus essential hypertension". Hypertension. 52 (4): 595–600. doi: 10.1161/HYPERTENSIONAHA.107.097147 . PMID   18711011.
  3. "Liddle Syndrome". The Lecturio Medical Concept Library. Retrieved 5 August 2021.
  4. "Epithelial sodium channel (ENaC) | Ion channels | IUPHAR/BPS Guide to PHARMACOLOGY". www.guidetopharmacology.org.
  5. 1 2 Enslow BT, Stockand JD, Berman JM (2019). "Liddle's syndrome mechanisms, diagnosis and management". Integrated Blood Pressure Control. 12: 13–22. doi: 10.2147/IBPC.S188869 . PMC   6731958 . PMID   31564964.
  6. Brenner and Rector's The Kidney, 8th ed. CHAPTER 40 – Inherited Disorders of the Renal Tubule. Section on Liddle Syndrome. Accessed via MDConsult.
  7. "Liddle Syndrome". Fact File. British Hypertension Society. February 2006. Archived from the original (doc) on 2011-07-25.
  8. Spence, J. David (May 2017). "Rational Medical Therapy Is the Key to Effective Cardiovascular Disease Prevention". Canadian Journal of Cardiology. 33 (5): 626–634. doi:10.1016/j.cjca.2017.01.003. PMID   28449833.
  9. Awadalla M, Patwardhan M, Alsamsam A, Imran N (2017). "Management of Liddle Syndrome in Pregnancy: A Case Report and Literature Review". Case Rep Obstet Gynecol. 2017: 6279460. doi: 10.1155/2017/6279460 . PMC   5370477 . PMID   28396810.
  10. 1 2 Ingelfinger, Julie R (2018). "Monogenic and Polygenic Contribution to Hypertension". In Flynn, JT (ed.). Pediatric Hypertension. Springer.
  11. Liddle GW, Bledose T and Coppage Jr WS. A familial renal disorder simulating primary aldosteronism with negligible aldosterone secretion (1963). Trans. Assoc. Am. Physicians, 76, 199–213.