NC10 phylum

Last updated

NC10 phylum
41598 2016 Article BFsrep32241 Fig4k HTML.png
CLSM image of a microcolony of NC10 bacteria (Ca. Methylomirabilis sinica) [1]
Scientific classification
Domain:
Phylum:
Class:
Orders
Synonyms

NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors. [1] [2] [3] [4]

Contents

Methylomirabilis oxyfera , a member of the NC10 phylum, is the first organism discovered to couple methane oxidation to the reduction of nitrite to dinitrogen (N2). [5] This is significant for several reasons. First, there are only three other biological pathways known to produce oxygen (photosynthesis, chlorate respiration, and the detoxification of reactive oxygen species). Second, anaerobic methane oxidation (AMO) coupled to nitrite reduction links the global carbon and nitrogen cycles, and thus denitrifying methanotrophs in the NC10 phylum may influence methane content in the atmosphere. [1] Third, this finding opens the possibility that oxygen was available in the atmosphere prior to the evolution of oxygenic photosynthesis and the Great Oxidation Event, [5] which challenges certain aspects of modern theories regarding the evolution of early life on Earth.

The NC10 phylum was first proposed in 2003 on the basis of highly divergent 16S rRNA gene sequences from aquatic microbial formations in flooded caves (Nullarbor caves, Australia). [6] The first genome insights for the phylum were published in 2010. [5] Members of the NC10 phylum have been detected in environments including the Brunssummerheide peatlands (Limburg, Netherlands), [7] the deep stratified Lake Zug (Central Switzerland), [8] and a paddy field with long-term fertilization (Hangzhou, China) [9]

NC10 species proposed to date include Methylomirabilis oxyfera [5] and Methylomirabilis lanthanidiphila [10]

Taxonomy

120 marker proteins based GTDB 07-RS207 [11] [12] [13]

"Rokubacteriales"

"Ca.  Methylomirabilis"

"Ca. M. limnetica"

"Ca. M. lanthanidiphila"

"Ca. M. oxygeniifera"

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [14] and National Center for Biotechnology Information (NCBI). [15] However many taxonomic names are taken from the Genome Taxonomy Database release 06-RS202. [16] [17] [18] [19]

See also

Related Research Articles

Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.

<span class="mw-page-title-main">Anammox</span> Anaerobic ammonium oxidation, a microbial process of the nitrogen cycle

Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.

Methanotrophs are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to survive.

Denitrifying bacteria are a diverse group of bacteria that encompass many different phyla. This group of bacteria, together with denitrifying fungi and archaea, is capable of performing denitrification as part of the nitrogen cycle. Denitrification is performed by a variety of denitrifying bacteria that are widely distributed in soils and sediments and that use oxidized nitrogen compounds in absence of oxygen as a terminal electron acceptor. They metabolise nitrogenous compounds using various enzymes, turning nitrogen oxides back to nitrogen gas or nitrous oxide.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Nitrospira translate into “a nitrate spiral” is a genus of bacteria within the monophyletic clade of the Nitrospirota phylum. The first member of this genus was described 1986 by Watson et al. isolated from the Gulf of Maine. The bacterium was named Nitrospira marina. Populations were initially thought to be limited to marine ecosystems, but it was later discovered to be well-suited for numerous habitats, including activated sludge of wastewater treatment systems, natural biological marine settings, water circulation biofilters in aquarium tanks, terrestrial systems, fresh and salt water ecosystems, and hot springs. Nitrospira is a ubiquitous bacterium that plays a role in the nitrogen cycle by performing nitrite oxidation in the second step of nitrification. Nitrospira live in a wide array of environments including but not limited to, drinking water systems, waste treatment plants, rice paddies, forest soils, geothermal springs, and sponge tissue. Despite being abundant in many natural and engineered ecosystems Nitrospira are difficult to culture, so most knowledge of them is from molecular and genomic data. However, due to their difficulty to be cultivated in laboratory settings, the entire genome was only sequenced in one species, Nitrospira defluvii. In addition, Nitrospira bacteria's 16S rRNA sequences are too dissimilar to use for PCR primers, thus some members go unnoticed. In addition, members of Nitrospira with the capabilities to perform complete nitrification has also been discovered and cultivated.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria.

Anaerobic oxidation of methane (AOM) is a methane-consuming microbial process occurring in anoxic marine and freshwater sediments. AOM is known to occur among mesophiles, but also in psychrophiles, thermophiles, halophiles, acidophiles, and alkophiles. During AOM, methane is oxidized with different terminal electron acceptors such as sulfate, nitrate, nitrite and metals, either alone or in syntrophy with a partner organism.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

Nitrospirota is a phylum of bacteria. It includes multiple genera, such as Nitrospira, the largest. The first member of this phylum, Nitrospira marina, was discovered in 1985. The second member, Nitrospira moscoviensis, was discovered in 1995.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

CandidatusScalindua wagneri is a Gram-negative coccoid-shaped bacterium that was first isolated from a wastewater treatment plant. This bacterium is an obligate anaerobic chemolithotroph that undergoes anaerobic ammonium oxidation (anammox). It can be used in the wastewater treatment industry in nitrogen reactors to remove nitrogenous wastes from wastewater without contributing to fixed nitrogen loss and greenhouse gas emission.

"Candidatus Scalindua" is a bacterial genus, and a proposed member of the order Planctomycetales. These bacteria lack peptidoglycan in their cell wall and have a compartmentalized cytoplasm. They are ammonium oxidizing bacteria found in marine environments.

Nitrososphaera is a mesophilic genus of ammonia-oxidizing Crenarchaeota. The first Nitrososphaera organism was discovered in garden soils at the University of Vienna leading to the categorization of a new genus, family, order and class of Archaea. This genus is contains three distinct species: N. viennensis, Ca. N. gargensis, and Ca N. evergladensis. Nitrososphaera are chemolithoautotrophs and have important biogeochemical roles as nitrifying organisms.

CandidatusAnammoxoglobus propionicus is an anammox bacteria that is taxonomically in the phylum of Planctomycetota. Anammoxoglobus propionicus is an interest to many researchers due to its ability to reduce nitrite and oxidize ammonium into nitrogen gas and water.

<i>Methylomirabilis oxyfera</i> Bacteria species

Candidatus "Methylomirabilis oxyfera" is a candidate species of Gram-negative bacteria belonging to the NC10 phylum, characterized for its capacity to couple anaerobic methane oxidation with nitrite reduction in anoxic environments. To acquire oxygen for methane oxidation, M. oxyfera utilizes an intra-aerobic pathway through the reduction of nitrite (NO2) to dinitrogen (N2) and oxygen.

Nitrospinota is a bacterial phylum. Despite only few described species, members of this phylum are major nitrite-oxidizing bacteria in surface waters in oceans. By oxidation of nitrite to nitrate they are important in the process of nitrification in marine environments.

"Candidatus Brocadia" is a candidatus genus of bacteria, meaning that while it is well-characterized, it has not been grown as a pure culture yet. Due to this, much of what is known about Candidatus species has been discovered using culture-independent techniques such as metagenomic sequence analysis.

Methanoperedens nitroreducens is a candidate species of methanotrophic archaea that oxidizes methane by coupling to nitrate reduction.

<span class="mw-page-title-main">Lisa Stein</span> American biologist and academic

Lisa Y. Stein is an American biologist who is a professor at the University of Alberta. Her research considers the microbiology of climate change. She was awarded the 2022 University of Alberta Killam Award for Excellence in Mentoring.

References

  1. 1 2 3 He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan (2016-09-01). "A novel denitrifying methanotroph of the NC10 phylum and its microcolony". Scientific Reports. 6 (1): 32241. Bibcode:2016NatSR...632241H. doi:10.1038/srep32241. ISSN   2045-2322. PMC   5007514 . PMID   27582299.
  2. Raghoebarsing, Ashna A.; Pol, Arjan; van de Pas-Schoonen, Katinka T.; Smolders, Alfons J. P.; Ettwig, Katharina F.; Rijpstra, W. Irene C.; Schouten, Stefan; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc (April 2006). "A microbial consortium couples anaerobic methane oxidation to denitrification". Nature. 440 (7086): 918–921. Bibcode:2006Natur.440..918R. doi:10.1038/nature04617. hdl: 1874/22552 . ISSN   1476-4687. PMID   16612380. S2CID   4413069.
  3. Ettwig, Katharina F.; Shima, Seigo; Pas‐Schoonen, Katinka T. Van De; Kahnt, Jörg; Medema, Marnix H.; Camp, Huub J. M. Op Den; Jetten, Mike S. M.; Strous, Marc (2008). "Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea". Environmental Microbiology. 10 (11): 3164–3173. doi:10.1111/j.1462-2920.2008.01724.x. ISSN   1462-2920. PMID   18721142.
  4. Wu, Ming L.; Ettwig, Katharina F.; Jetten, Mike S. M.; Strous, Marc; Keltjens, Jan T.; Niftrik, Laura van (2011-02-01). "A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'". Biochemical Society Transactions. 39 (1): 243–248. doi:10.1042/BST0390243. ISSN   0300-5127. PMID   21265781.
  5. 1 2 3 4 Ettwig, Katharina F.; Butler, Margaret K.; Le Paslier, Denis; Pelletier, Eric; Mangenot, Sophie; Kuypers, Marcel M. M.; Schreiber, Frank; Dutilh, Bas E.; Zedelius, Johannes; de Beer, Dirk; Gloerich, Jolein (March 2010). "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria". Nature. 464 (7288): 543–548. Bibcode:2010Natur.464..543E. doi:10.1038/nature08883. ISSN   1476-4687. PMID   20336137. S2CID   205220000.
  6. Rappé, Michael S.; Giovannoni, Stephen J. (October 2003). "The Uncultured Microbial Majority". Annual Review of Microbiology. 57 (1): 369–394. doi:10.1146/annurev.micro.57.030502.090759. ISSN   0066-4227. PMID   14527284.
  7. Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.; Ettwig, Katharina F. (2012-10-05). "Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria". Applied and Environmental Microbiology. 78 (24): 8657–8665. Bibcode:2012ApEnM..78.8657Z. doi: 10.1128/aem.02102-12 . ISSN   0099-2240. PMC   3502929 . PMID   23042166.
  8. Graf, Jon S.; Mayr, Magdalena J.; Marchant, Hannah K.; Tienken, Daniela; Hach, Philipp F.; Brand, Andreas; Schubert, Carsten J.; Kuypers, Marcel M. M.; Milucka, Jana (2018). "Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake". Environmental Microbiology. 20 (7): 2598–2614. doi: 10.1111/1462-2920.14285 . hdl: 21.11116/0000-0003-B834-3 . ISSN   1462-2920. PMID   29806730.
  9. He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan (2015-01-01). "Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria". Applied Microbiology and Biotechnology. 99 (2): 939–946. doi:10.1007/s00253-014-6033-8. ISSN   1432-0614. PMID   25186148. S2CID   33695086.
  10. Versantvoort, Wouter; Guerrero-Cruz, Simon; Speth, Daan R.; Frank, Jeroen; Gambelli, Lavinia; Cremers, Geert; van Alen, Theo; Jetten, Mike S. M.; Kartal, Boran; Op den Camp, Huub J. M.; Reimann, Joachim (2018). "Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila". Frontiers in Microbiology. 9: 1672. doi: 10.3389/fmicb.2018.01672 . ISSN   1664-302X. PMC   6094997 . PMID   30140258.
  11. "GTDB release 07-RS207". Genome Taxonomy Database . Retrieved 20 June 2022.
  12. "bac120_r207.sp_labels". Genome Taxonomy Database . Retrieved 20 June 2022.
  13. "Taxon History". Genome Taxonomy Database . Retrieved 20 June 2022.
  14. J.P. Euzéby. "Bacteria". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-06-27.
  15. Sayers; et al. "Bacteria". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  16. "GTDB release 06-RS202". Genome Taxonomy Database .
  17. Parks, DH; Chuvochina, M; Waite, DW; Rinke, C; Skarshewski, A; Chaumeil, PA; Hugenholtz, P (November 2018). "A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life". Nature Biotechnology. 36 (10): 996–1004. bioRxiv   10.1101/256800 . doi:10.1038/nbt.4229. PMID   30148503. S2CID   52093100.
  18. Parks, DH; Chuvochina, M; Chaumeil, PA; Rinke, C; Mussig, AJ; Hugenholtz, P (September 2020). "A complete domain-to-species taxonomy for Bacteria and Archaea". Nature Biotechnology. 38 (9): 1079–1086. bioRxiv   10.1101/771964 . doi:10.1038/s41587-020-0501-8. PMID   32341564. S2CID   216560589.
  19. Chaumeil, PA; Mussig, AJ; Hugenholtz, P; Parks, DH (15 November 2019). "GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database". Bioinformatics. 36 (6): 1925–1927. doi: 10.1093/bioinformatics/btz848 . PMC   7703759 . PMID   31730192.