Nycteria

Last updated

Nycteria
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: TSAR
Clade: SAR
Clade: Alveolata
Phylum: Apicomplexa
Class: Aconoidasida
Order: Haemospororida
Family: Plasmodiidae
Genus: Nycteria
Species

Nycteria is a genus of protozoan parasites that belong to the phylum Apicomplexa. [2] It is composed of vector-borne haemosporidian parasites that infect a wide range of mammals such as primates, rodents and bats. [3] Its vertebrate hosts are bats. [1] First described by Garnham and Heisch in 1953, Nycteria is mostly found in bat species where it feeds off the blood of their hosts and causes disease. Within the host, Nycteria develops into peculiar lobulated schizonts in parenchyma cells of the liver, similarly to the stages of Plasmodium falciparum in the liver. [4] The vector of Nycteria has been hard to acquire and identify. [2] Because of this, the life cycle of Nycteria still remains unknown and understudied. It has been suggested that this vector could be an arthropod other than a mosquito [3] or the vector of most haemosporidian parasites.

Contents

Etymology

The word Nycteris is derived from the Greek word “nykteros”, also “bat”. Nycteris is a bat genus in the family Nycteridae, and the genus name Nycteria was given to underline the relationship between these bats and their parasites.

Historical background

Nycteria was first described by Garnham and Heisch in 1953, where they discovered a new form of blood parasite (Nycteria medusiformis) in Kenya responsible for malaria in the Egyptian tomb bat Taphozous perforates. [3]

Description

To date, Nycteria has been characterized based on parasite blood and tissue stages, which are limited to gametocytes. [2] The earliest morphological description of Nycteria was from discovery of Nycteria medusiformis in the insectivorous bat Taphozous perforates, [3] [4] where gametocytes of the species were found in the blood of their host and asexual development of the parasite was confined to the parenchyma cells of the liver. Members of the genus Nycteria lack erythrocytic schizogony, which is a specific replication phase inside red blood cells responsible for causing malaria. [5] Instead, they develop into peculiar lobulated schizonts of less than 100 μm in size, similar to Plasmodium falciparum stages in the liver. [4] They consist of characteristic filaments that protrude from the surface of the parasitized blood cells; however, these filaments were not considered to be cellular structures of the parasite itself, but as degenerative formations of the erythrocyte. [3] The size (numerical value unknown) of these gametocytes were also described. [6] Round male gametocytes of Nycteria were also found to rarely occupy the host erythrocyte completely. [6]

A recent study also showed similar morphological characteristics of the gametocytes in N. medusiformis [7] [4] They found mature gametocytes completely filled the red blood cells of the infected species and were slightly enlarged by 2 μm more than uninfected red blood cells. [8] Filaments expressed on the surface of infected erythrocytes were also found, as originally described, [3] and became fewer and shorter as the gametocytes matured and sometimes disappeared at later stages. [7] Fine pigment grains were found scattered irregularly throughout the cytoplasm and highly chromophilic macrogametocytes had a dark blue-purple color containing a small, condensed nuclei. [7] Microgametocytes had a pale, pink color containing a small, central condensation of chromatin possibly reminiscent of a rosette – groupings of cells usually found in tumors. [7]

Another species of the genus, N. grandis, also showed similar morphological structure of the Nycteria gametocyte to N. medusiformis, but lack highly characteristic filaments as seen in N. medusiformis. [7] Therefore, the morphotype of N. grandis differed from N. medusiformis by size, nucleus of the microgametocytes, and pigment features. Unfortunately, insufficient data on Nycteria gametocytes in N. grandis does not allow a full description of the species. [7] Due to lack understanding of the vector of Nycteria, details of its pre-erythrocytic cycle remain unknown. [8]

Habitat and ecology

Nycteria is prevalent in African bats, feeding on the blood of their hosts. [8] Although the identity of the vector in Nycteria still remains unresolved during their parasitic life cycle, [2] it has been suggested that it could possibly be an arthropod other than a mosquito. [3] It is also hypothesized that the vectors of Nycteria belong to the family Diptera, since most haemosporidian parasites are transmitted through blood-sucking dipteran insects. [2]

Future research

To date, studies of haemosporidian parasites are highly neglected. [2] Further research on the genus might offer previous unrecognized insights into the evolution of human pathogens, as well into diverse parasite strategies to achieve stable transmission to host populations. [2]

Hosts

Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

<span class="mw-page-title-main">Plasmodiidae</span> Family of apicomplexan protists

The Plasmodiidae are a family of apicomplexan parasites, including the type genus Plasmodium, which is responsible for malaria. This family was erected in 1903 by Mesnil and is one of the four families in the order Haemospororida.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<i>Plasmodium knowlesi</i> Species of single-celled organism

Plasmodium knowlesi is a parasite that causes malaria in humans and other primates. It is found throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Like other Plasmodium species, P. knowlesi has a life cycle that requires infection of both a mosquito and a warm-blooded host. While the natural warm-blooded hosts of P. knowlesi are likely various Old World monkeys, humans can be infected by P. knowlesi if they are fed upon by infected mosquitoes. P. knowlesi is a eukaryote in the phylum Apicomplexa, genus Plasmodium, and subgenus Plasmodium. It is most closely related to the human parasite Plasmodium vivax as well as other Plasmodium species that infect non-human primates.

Giovanolaia is a subgenus of the genus Plasmodium created by Corradetti et al. in 1963. The parasites within this subgenus infect birds.

Vinckeia is a subgenus of the genus Plasmodium — all of which are parasitic alveolates. The subgenus Vinckeia was created by Cyril Garnham in 1964 to accommodate the mammalian parasites other than those infecting the primates.

<i>Leucocytozoon</i> Genus of protists

Leucocytozoon is a genus of parasitic alveolates belonging to the phylum Apicomplexa.

<i>Haemoproteus</i> Genus of single-celled organisms

Haemoproteus is a genus of alveolates that are parasitic in birds, reptiles and amphibians. Its name is derived from Greek: Haima, "blood", and Proteus, a sea god who had the power of assuming different shapes. The name Haemoproteus was first used in the description of H. columbae in the blood of the pigeon Columba livia by Kruse in 1890. This was also the first description of this genus. Two other genera — Halteridium and Simondia — are now considered to be synonyms of Haemoproteus.

Hematozoa is a subclass of blood parasites of the Apicomplexa clade. Well known examples include the Plasmodium spp. which cause malaria in humans and Theileria which causes theileriosis in cattle. A large number of species are known to infect birds and are transmitted by insect vectors. The pattern in which Haematozoa infect a host cell depends on the genera of the blood parasite. Plasmodium and Leucozytozoon displace the nucleus of the host cell so that the parasite can take control of the cell where as Hemoproteus completely envelops the nucleus in a host cell.

<span class="mw-page-title-main">Adeleorina</span> Suborder of microscopic, spore-forming, single-celled parasites in the aplcomplex phylum

Adeleorina is a suborder of parasites in the phylum Apicomplexa.

<span class="mw-page-title-main">Haemosporida</span> Order of protists

The Haemosporida are an order of intraerythrocytic parasitic alveolates.

Karyolysus is a genus of coccidia. With the exception of K. sonomae whose vertebrate host is the yellow-legged frog, species in this genus only infect lizards of the genus Lacerta.

The genus Polychromophilus consists of obligate intracellular eukaryotic parasites that infect bats from every continent except Antarctica. They are transmitted by bat flies, which act as an insect vector as well as the parasite’s site of sporogeny. Polychromophilus follows a fairly typical Haemospororidian lifecycle, with gametocytes and gametes restricted to the bloodstream of the host and meronts infecting organs – most notably the lungs and the liver. The type species is Polychromophilus melanipherus, and was described by Dionisi in 1898.

Hepatocystis is a genus of parasites transmitted by midges of the genus Culicoides. Hosts include Old World primates, bats, hippopotamus and squirrels. This genus is not found in the New World. The genus was erected by Levaditi and Schoen, 1932, as Hepatocystes.

Haemosporidiasina (Haemosporidia) is a subclass of apicomplexans described by Jacques Euzéby in 1988. The taxon is very similar to Aconoidasida.

The genus Schellackia comprises obligate unicellular eukaryotic parasites within the phylum Apicomplexa, and infects numerous species of lizards and amphibians worldwide. Schellackia is transmitted via insect vectors, primarily mites and mosquitoes, which take up the parasite in blood meals. These vectors then subsequently infect reptilian and amphibian which consume the infected insects. The parasites deform erythrocytes of the host into crescents, and can be visualized using a blood smear.

Plasmodium coatneyi is a parasitic species that is an agent of malaria in nonhuman primates. P. coatneyi occurs in Southeast Asia. The natural host of this species is the rhesus macaque and crab-eating macaque, but there has been no evidence that zoonosis of P. coatneyi can occur through its vector, the female Anopheles mosquito.

Susan L. Perkins is an American microbiologist and the Martin and Michele Cohen Dean of Science at The City College of New York (CCNY). Her expertise includes the pathology and genetics of malaria parasites and other haemosporidians infecting myriad non-primate species.

References

  1. 1 2 3 4 5 Rosin, G.; Landau, I. (1978). "Considérations sur le genre Nycteria (Haemoproteidae) parasite de Microchiroptères africains avec description de quatre espèces nouvelles". Annales de Parasitologie Humaine et Comparée. 53 (5): 447–459. doi: 10.1051/parasite/1978535447 . Open Access logo PLoS transparent.svg
  2. 1 2 3 4 5 6 7 Schaer J, Reeder DM, Vodzak ME, Olival KJ, Weber N, Mayer F, Matuschewski F, Perkins SL (2015). "Nycteria parasites of Afrotropical insectivorous bats". Int J Parasitol. 45 (6): 375–384. doi: 10.1016/j.ijpara.2015.01.008 . PMID   25765623.
  3. 1 2 3 4 5 6 7 Garnham PC, Heisch RB (1953). "On a new blood parasite of insectivorous bats". Trans R Soc Trop Med Hyg. 47 (5): 357–363. doi:10.1016/S0035-9203(53)80016-7. PMID   13102576.
  4. 1 2 3 4 Garnham PC (1966). "Malaria Parasites and Other Haemosporidia". Science. 157 (3792): 1029. doi:10.1126/science.157.3792.1029-a.
  5. Rosskopf SP, Held J, Gmeiner M, Mordmüller B, Matsiégui PB, Eckerle I, Weber N, Matuschewski K, Schaer J (2019). "Nycteria and Polychromophilus parasite infections of bats in Central Gabon". Infect Genet Evol. 68: 30–34. doi:10.1016/j.meegid.2018.11.022. PMID   30508688.
  6. 1 2 Landau I, Chavatte JM, Karadjian G, Chabaud A, Beveridge I (2012). "The haemosporidian parasites of bats with description of Sprattiella alecto gen. nov., sp. nov". Parasite. 19 (2): 137–146. doi:10.1051/parasite/2012192137. PMC   3671437 . PMID   22550624.
  7. 1 2 3 4 5 6 Karadjian G, Hassanin A, Saintpierre B, Gembu Tungaluna GC, Ariey F, Ayala FJ, Landua I, Duval L (2016). "Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats". Proc Natl Acad Sci USA. 113 (35): 9834–9839. doi: 10.1073/pnas.1610643113 . PMC   5024609 . PMID   27528689.
  8. 1 2 3 Martinsen ES, McInerney N, Brightman H, Ferebee K, Walsh T, McShea WJ, Forrester TD, Ware L, Joyner PH, Perkins SL, Latch EK, Yabsley MJ, Schall JJ, Fleischer RC (2016). "Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus)". Sci Adv. 2 (2): e1501486. Bibcode:2016SciA....2E1486M. doi:10.1126/sciadv.1501486. PMC   4788485 . PMID   26989785.