Osprey-class submersible

Last updated

History
Naval ensign of China.svg  People's Liberation Army Navy
NameOsprey class submersible
Ordered2
Awarded2
Builder Wuchang Shipbuilding Factory
Sponsored by PLAN
Completed1988
Acquired1989
Commissioned1989
Maiden voyage1988
In service1989
StatusIn active service
General characteristics
Type submersible
Displacement14.18 t
Length7.3 m (24 ft)
Beam2.7 m (8.9 ft)
Draft3.35 m (11.0 ft)
Installed powerbatteries
Propulsionelectrical-hydraulic hybrid
Speed2 kt
Endurance72 h
Test depth200 m (660 ft)
Complement3
Sensors and
processing systems
sonar & search lights

Osprey class submersible is a class of submersible of the People's Liberation Army Navy (PLAN) specially designed to perform torpedo retrieving missions at test ranges. This class submersible was highly classified when it originally entered service in 1989, and it was not until more than a decade later in the mid of the first decade of the 21st century when it was revealed to the public, when one of the design team members, the deputy general designer Mr. Sun Xin (孙欣), was publicized in a 2006 interview to disclose some characteristics of the submersible. This class is currently consisted of two boats, Osprey 1 (鱼鹰1号, Yu Ying Yi Hao) and Osprey 2 (鱼鹰2号, Yu Ying Er Hao).

Contents

Origin

In 1969, the 705th Research Institute of China Shipbuilding Industry Corporation (CSIC) led a team consisting of more than eighty research establishments and factories had completed No. 750 Deep Water Test Range, which was the main test range for Chinese torpedoes, depth charges and naval mines. However, the test range has serious limitations when the naval weaponry tested sunk to the bottom, because there was no equipment at the time to salvage the test samples at the bottom of the test range. In addition to the financial and economical loss, the more damaging result was that the technical data was unavailable as the weaponry could not be retrieved from the bottom of the test range, thus greatly hindering the development of naval weaponry tested.

To overcome this shortcoming, a submersible that was capable of retrieving the test samples sunk to the bottom of the test range was needed. A joint design team headed by the 710th Research Institute Archived 22 July 2009 at the Wayback Machine of CISC was tasked to develop such as submersible, and after much debate, a manned submersible was chosen over the unmanned version. Designer would later claim that the success of Osprey class submersible would reaffirm the belief that a manned submersible would be better the unmanned version, when operating in an environment with an average depth of at least a hundred meters.

Design

Though the maximum depth of Osprey class submersible is only two hundred meters, the difficulties faced was much greater than that of designing a regular submarine, because of the unique requirements of the submersible. China had never designed anything similar before, and nearly everything in its design was needed to adopt technologies that were new to China, most which had to be indigenously developed. New methodologies and technologies developed and adopted for Osprey class included:

Much work was devoted to the careful design of the general layout, pressure hull and other unpressurized compartments, main and auxiliary propulsion systems, hydraulic systems, auxiliary power unit and piping system, electrical system, observation and navigational systems, underwater lighting system, salvage system, life support and safety system. This resulted in the optimum compromise reached for the best performance, which was claimed to be equal to that of foreign designs, and in some areas, such as hovering and sideway movements, designers of Osprey submersible have claimed that it outperforms its foreign counterparts. The submersible is capable of hovering three meters above the bottom without stirring up the sediment, thus enables its operator to clearly observe objects ten meters away at the bottom.

Structure

There are a total of three large observation windows located in the frontal half of the submersible, and a total of two manipulators. One of the manipulators with 3 degrees of freedom (DOF) has the capacity of carrying 1.2 ton, while the remaining smaller manipulator with 6-DOF has the capacity of carrying 32 kg. The submersible is equipped with an advanced color imaging sonar designated as Model 971, jointly developed by Simrad Optronics Group and Kongsberg Mesotech in the early 1980s. Because of the limited Chinese industrial capability at the time, China could not produce a similar system on its own and such system had to be imported from abroad. The salvage system on board the submersible consists of manipulators, salvage cables made of stainless steel, buoys and nylon cables attaching to the buoys.

The propulsion system of Osprey class submersible is the most significant features that differentiate it from other conventional submarines. Instead of using electric motor as most other submersibles in the world, the propulsion system is hybrid electrical – hydraulic system with the thrusts powered by a hydraulic system. The main shrouded propeller is located in the center of the crucifix control surfaces at the stern, which enables the submersible to turn in the horizontal plan, but the main shrouded propeller cannot control the motion in the vertical plan, which is controlled by auxiliary propellers. These auxiliary propulsion systems also enable the submersibles to move sideways. Hydraulic system is selected for its high efficiency, compact size, light weight and the ease of installation, and with the thrusters installed outside the pressure hull, there no need to penetrate the pressure hull like the main propulsion axis of the conventional submarines. The operation of the submersible is different from that of a submarine, but somewhat similar to that of a helicopter instead.

Deployment

Designers decided that it would be impractical and uneconomical to use Osprey submersible to search the entire test range on its own during its deployment, so a system of different search patterns was established to locate the test sample on the bottom of the test range. As the mother ship carried the Osprey submersible to the test range, the area would be first scanned by the mother ship by its side-looking sonar or other means such as information based on the last recorded data. Once an approximate location is narrowed down to an area about one square kilometer, a second stage of search would begin with the submersible entering the water. The color imaging Model 971 sonar would search the area and identify the potential target. After the target is identified, it would be visually confirmed by the operator under illumination in the third stage of search as the submersible approaches the target. With target being confirmed, salvage operations could begin with first washing off the sediments that the target is buried under.

When the test sample of the naval weaponry at the bottom of the test range is less than 100 kg, it would directly carried by the manipulator to the surface. If the weight of the test sample is greater than 100 kg, the operator would connect the buoys to the test sample by using manipulator first, and then release the buoy. Once the buoy reached the surface, it would be recovered by the mother ship, and the salvage cable connected to the buoys would be connected to the retrieving system on board the mother ship to recover the test sample. Once the test sample is secured on board the mother ship, the submersibles would be recalled and retrieved, thus concluding the salvage operation. Built by the same manufacturer that built the Type 7103 DSRV for PLAN, the famed Wuchang Shipbuilding Factory (武昌造船厂, later reorganized to Wuhan Shipbuilding Industry Corporation, Inc.), Osprey class submersibles can be carried by a various platforms, such as Type 925 Dajiang class naval auxiliary ships.

Osprey 1

Osprey 1 performed well beyond the original expectation in that it has surpassed all design standards. During the trial in May 1988, it has successfully salvaged a BL-1 (BL = Ba Lei, 靶雷) training torpedo at the depth of 145 meters. In November of the same year, Osprey 1 successfully salvaged a Yu-4B torpedo used for evaluation from the depth of 143 meters. Both tasks were completed near the maximum working depth, and the submersible entered service in 1989. In addition to support naval weaponry tests, Osprey 1 was also used extensively used in underwater archeology, when its existence was revealed for the very first time when Chinese television broadcast the footage of such archeological activities in 2001. However, with the exception of brief appearance in the news footage, nothing else was released and Osprey 1 remained a mystery in the eyes of military enthusiasts, and it was not until half a decade later in 2006 when the details finally emerged, when the deputy general designer gave an interview to Chinese magazine Naval & Merchant Ships, providing a more detailed info. Osprey 1 had won several awards, including a 1st place in the National Scientific and Technological Advance Award, and a 1st place in the CSIC Scientific and Technological Advance Award.

Osprey 2

In the 1990s, Osprey 2 was built and subsequently entered service. Improvements reportedly included digitization / computerization, adaptation of a more advanced domestic sonar (rumored to be developed with help of reverse engineering similar western systems), and the increased capability of manipulators. In addition to the original purpose of supporting naval weaponry tests, Osprey 2 is far more capable than Osprey 1 in that it could perform a much wider range of tasks, and in fact, though Osprey 2 is deployed as frequently as its predecessor, a significant portion of the missions are other than purely supporting the underwater weaponry tests. The designers therefore do not consider Osprey 2 as a sister ship of Osprey 1, but instead, a development of a different class. In comparison to other Chinese submersibles such as Type 7103 DSRVs, the maintainability and availability of Osprey class submersible are much higher and the deployment of every boat of this class is much higher boats of other classes.

Specifications

The following specification applies to Osprey 1, though the spec for Osprey 2 is rumored to be similar

Related Research Articles

<span class="mw-page-title-main">Challenger Deep</span> Deepest-known point of Earths seabed

The Challenger Deep is the deepest-known point of the seabed of Earth, with a depth of 10,902–10,929 m (35,768–35,856 ft) by direct measurement from deep-diving submersibles, remotely operated underwater vehicles and benthic landers, and (sometimes) slightly more by sonar bathymetry.

<span class="mw-page-title-main">Remotely operated underwater vehicle</span> A tethered underwater mobile device operated by a remote crew

A remotely operated underwater vehicle is a tethered underwater mobile device, commonly called underwater robot.

<span class="mw-page-title-main">Midget submarine</span> Submarine under 150 tons

A midget submarine is any submarine under 150 tons, typically operated by a crew of one or two but sometimes up to six or nine, with little or no on-board living accommodation. They normally work with mother ships, from which they are launched and recovered and which provide living accommodation for the crew and support staff.

<i>Flyvefisken</i>-class patrol vessel

The Flyvefisken-class patrol vessels are warships of the Royal Danish Navy. The class is also known as the Standard Flex 300 or SF300 class. The five vessels sold to the Portuguese Navy are locally referred as Tejo class.

The AN/SQQ-32 minehunting sonar set (MSS) is a variable-depth mine-hunting sonar system originally developed by Raytheon and Thales Underwater Systems for the United States Navy. It includes two separate active sonar systems to detect and classify mine-like objects on the surface, in the volume, or on the bottom of the sea. The sonar systems are packaged in a single towed body tethered to the ship through a cable providing power and data transmission, with the cable length variable via an electric winch. A hole in the ship extending from the sonar maintenance room (SMR) to the hull allows movement of the towed body in different configurations for maintenance, stowage at sea, and minehunting operations. The towed body can be configured for minehunting by either locking to the bottom of the ship's hull for shallow water operations, or by extending and retracting the tow cable to allow for variable depth sonar (VDS) operations. VDS operations are necessary in deep water due to refraction of the sonar from the various temperature layers present in the ocean; with the sonar positioned in the same thermal layer as the suspected mines the error induced by refraction is minimized. The detect and classify sonar subsystems are independently monitored and controlled by two operators at independent panels working together to find and characterize underwater objects as mine or non-mine like objects.

<span class="mw-page-title-main">Scorpio ROV</span> Work class remotely operated underwater vehicle

The Scorpio is a brand of underwater submersible Remotely Operated Vehicle (ROV) manufactured by Perry Tritech used by sub-sea industries such as the oil industry for general operations, and by the Royal Navy and the United States Navy for submarine rescue services. Originally developed by AMETEK Straza of El Cajon, United States, they were subsequently developed by Perry Tritech. Although the design of the original Scorpio is over several decades old, it forms the basis for a current generation of Scorpio-branded ROVs. Scorpio ROVs are named in a sequence following the order of manufacture, such as "Scorpio 17" or "Scorpio 45" which refer to specific ROVs.

<i>Mir</i> (submersible) Self-propelled deep submergence vehicle

Mir were a self-propelled class of deep-submergence vehicle. The project was initially developed by the USSR Academy of Sciences along with Design Bureau Lazurith. Later two vehicles were ordered from Finland. The Mir-1 and Mir-2, delivered in 1987, were designed and built by the Finnish company Rauma-Repola's Oceanics subsidiary. The project was carried out under the supervision of constructors and engineers of the Shirshov Institute of Oceanology.

<span class="mw-page-title-main">Towed array sonar</span>

A towed array sonar is a system of hydrophones towed behind a submarine or a surface ship on a cable. Trailing the hydrophones behind the vessel, on a cable that can be kilometers long, keeps the array's sensors away from the ship's own noise sources, greatly improving its signal-to-noise ratio, and hence the effectiveness of detecting and tracking faint contacts, such as quiet, low noise-emitting submarine threats, or seismic signals.

The People's Liberation Army Navy (PLAN) is the naval branch of the People's Liberation Army (PLA), the armed forces of the People's Republic of China. The PLAN force consists of approximately 250,000 men and over a hundred major combat vessels, organized into three fleets: the North Sea Fleet, the East Sea Fleet, and the South Sea Fleet.

The Type 925 Dajiang with NATO reporting name Dajiang, or 大江 in Chinese, meaning Great River, is a type of naval auxiliary ship belonging to the People's Republic of China. Each ship is usually equipped with up to two Type 7103 DSRV class Deep Submergence Rescue Vehicles (DSRVs). The ship is designed to replace the first People's Liberation Army Navy (PLAN) submarine tender PLANS Mount Tai, and the lead ship of the Dajiang class is the Changxingdao. The Type 925 is a submarine tender that can also be used as a submarine rescue ship, and hence, it is designated as a submarine support ship by Chinese.

Salvage diving is the diving work associated with the recovery of all or part of ships, their cargoes, aircraft, and other vehicles and structures which have sunk or fallen into water. In the case of ships it may also refer to repair work done to make an abandoned or distressed but still floating vessel more suitable for towing or propulsion under its own power. The recreational/technical activity known as wreck diving is generally not considered salvage work, though some recovery of artifacts may be done by recreational divers.

The Sea Pole class bathyscaphe is a class of bathyscaphe of the People's Republic of China (PRC). They are capable of diving up to 7,000 meters, covering 99.8% of the oceanic floor of the world. Two units of this class are planned, with derivatives to follow and are used by both the civilian and military establishments in China.

The Chinese 8A4 class ROUV is a remotely operated underwater vehicle (ROUV) used to perform various underwater tasks, ranging from oil platform service to salvage and rescue missions. The 8A4 is a member of a series of related ROUVs developed by the Shenyang Institute of Automation (SIA) in the People's Republic of China (PRC). The predecessor to the 8A4 was the RECON-IV, an improved version of the American RECON-III. The 8A4 itself is an upgraded version of the American AMETEK 2006, and the 7B8 is an improved version of the 8A4.

Sea Dragon (海龙) class remotely operated underwater vehicle (ROUV) is a class of Chinese remotely operated vehicle (ROV) used to perform various underwater tasks ranging from oil platform service to salvage and rescue missions, and it is a class of ROUV developed in People's Republic of China (PRC) with diving capability up to 3,500 meters. After its successful development, a series of ROUVs have been based on the experience gained from Sea Dragon.

Explorer autonomous underwater vehicle (AUV) is a Chinese AUV developed in the People's Republic of China (PRC),first entering service in November 1994. It should not be confused with another two Anglo-American AUVs that share the same name: the American Autonomous Benthic Explorer AUV (ABE) built by Woods Hole Oceanographic Institution, and the British Columbia-based International Submarine Engineeringbuilt Canadian Explorer AUV, which is based on its earlier ARCS AUV.Many Chinese AUVs later developed, such as Wukong, WZODA, CR series, Exploration series, Micro Dragon series, Sea Whale series, Submerged Dragon series AUVs, are all based on experienced gained from Explorer AUV.

The SJT class are remotely operated underwater vehicles. They are a series of Chinese ROVs, jointly developed by the Shenyang Institute of Automation of the Chinese Academy of Science, and the Institute of Underwater Engineering of Shanghai Jiao Tong University (SHJTU). The general designer of the SJT class of ROVs is Zhu Jimao (朱继懋), a professor at SHJTU, who also was the general designer of the earlier Type 7103 DSRV. Many more ROUVs have been developed after the SJT series, based on experience gained from this series.

Underwater work is work done underwater, generally by divers during diving operations, but includes work done underwater by remotely operated vehicles and crewed submersibles.

<i>Safeguard</i>-class rescue and salvage ship United States Navy salvage and rescue ships

The Safeguard class is a class of Towing, Salvage and Rescue Ship under the United States Navy.

Deepinfar unmanned underwater vehicles (UUV)s are uncrewed vehicles developed in the People's Republic of China (PRC) by Deepinfar, most of which are in service with various Chinese governmental agencies/departments, and government-owned enterprises.

<span class="mw-page-title-main">Underwater survey</span> Inspection or measurement in or of an underwater environment

An underwater survey is a survey performed in an underwater environment or conducted remotely on an underwater object or region. Survey can have several meanings. The word originates in Medieval Latin with meanings of looking over and detailed study of a subject. One meaning is the accurate measurement of a geographical region, usually with the intention of plotting the positions of features as a scale map of the region. This meaning is often used in scientific contexts, and also in civil engineering and mineral extraction. Another meaning, often used in a civil, structural, or marine engineering context, is the inspection of a structure or vessel to compare actual condition with the specified nominal condition, usually with the purpose of reporting on the actual condition and compliance with, or deviations from, the nominal condition, for quality control, damage assessment, valuation, insurance, maintenance, and similar purposes. In other contexts it can mean inspection of a region to establish presence and distribution of specified content, such as living organisms, either to establish a baseline, or to compare with a baseline.

References