Pickering Nuclear Generating Station | |
---|---|
Country | Canada |
Location | Pickering, Durham Region, Ontario |
Coordinates | 43°48′42″N79°03′57″W / 43.81167°N 79.06583°W |
Status | Operational |
Construction began | Unit 1: June 1, 1966 Unit 2: September 1, 1966 Unit 3: December 1, 1967 Unit 4: May 1, 1968 Unit 5: November 1, 1974 Unit 6: October 1, 1975 Unit 7: March 1, 1976 Unit 8: September 1, 1976 |
Commission date | Unit 1: July 29, 1971 Unit 2: December 30, 1971 Unit 3: June 1, 1972 Unit 4 June 17, 1973 Unit 5: May 10, 1983 Unit 6: February 1, 1984 Unit 7: January 1, 1985 Unit 8: February 28, 1986 [1] |
Decommission date | 28 May 2007 (A2) 31 Oct 2008 (A3) |
Construction cost | $716 million CAD (A station) $3.84 billion CAD (B station) |
Owner(s) | Ontario Power Generation (OPG) |
Operator(s) | Ontario Power Generation (OPG) |
Employees | 3000+ |
Nuclear power station | |
Reactor type | CANDU-500 |
Reactor supplier | AECL |
Cooling source | Lake Ontario |
Thermal capacity | 6 × 1744 MWth |
Power generation | |
Units operational | 2 × 515 MWe (NET A 1–4) 2 × 516 MWe (NET B 6–8) 1 × 522 MWe (NET B 7) 1 x 530 MWe (NET B 5) |
Make and model | 2 × CANDU 500A 4 × CANDU 500B |
Units decommissioned | 2 × 515 MW |
Nameplate capacity | 3114 MW |
Capacity factor | 73.85% (lifetime) 87.07% (2019) |
Annual net output | 23,600 GW·h (2019) [2] 972,252 GW·h (lifetime) |
External links | |
Website | Pickering Nuclear |
Commons | Related media on Commons |
Pickering Nuclear Generating Station is a Canadian nuclear power station located on the north shore of Lake Ontario in Pickering, Ontario. It is one of the oldest nuclear power stations in the world and Canada's third-largest, with eight CANDU reactors. Since 2003, two of these units have been defuelled and deactivated. The remaining six produce about 16% of Ontario's power and employ 3,000 workers. [3]
A single 1.8 MWe wind turbine, named the OPG 7 commemorative turbine, was installed on the site of the generating station until October 2019, when it was dismantled. [4]
The reactors can be classified as follows:
PICKERING A
PICKERING B
The site was once Squires Beach located west of Duffins Creek. The facility was constructed in stages between 1965 and 1986 [5] by the provincial Crown corporation, Ontario Hydro, with significant completion of Station A scheduled for 1971. [6] In April 1999, Ontario Hydro was split into five component Crown corporations with Ontario Power Generation (OPG) taking over all electricity generating stations. [7] OPG continues to operate the Pickering station. [8]
The Pickering station is a large multi-unit nuclear facility, comprising six operating CANDU nuclear reactors with a total output of 3,114 MW when all units are on line, and two non-operating units with a total output of 1,030 MW currently shut down in safe storage. [8] The facility is connected to the North American power grid via numerous 230 kV and 500 kV transmission lines. [9]
The facility was operated as two distinct stations, Pickering A (Units 1 to 4) and Pickering B (Units 5 to 8) until 2011. [10] While primarily administrative in nature, the division was not wholly artificial, as there are some distinct differences in design between the two groups of stations. (Example: The Pickering A units employ a moderator dump as a shutdown mechanism, [11] a feature not found in Pickering B, which instead uses what is called an over-poisoned reaction guaranteed shutdown. [12] ) There are, however, a number of systems and structures in common between the two stations; the most notable of these is the shared vacuum building, a negative pressure containment system. [13] The operation of Pickering A and B was unified in 2010, [14] to reduce costs now that Pickering A Units 2 and 3 are shut down in safe storage.
On December 31, 1997 the four Pickering A reactors, along with the remaining three units at Bruce A, were shut down by Ontario Hydro for safety reasons [15] and placed in lay-up. Specific to Pickering A, four years earlier the AECB had required mandatory upgrades to the safe shutdown system be completed by the end of 1997, [16] which differed from that at the other three plants. Pickering A featured a moderator dump as its 2nd shutdown system, [17] and this was deemed too slow compared to the poison injection system that later plants used, including Pickering B. Ontario Hydro committed to the refit and restart project, but it underwent long delays and large cost over-runs.
Often called a refurbishment, the return to service of Pickering A units 1 and 4 did not involve refurbishing the reactor cores, which involves replacing the calandria tubes, pressure tubes, feeders and end fittings. The main scope of work was the upgrading of the secondary safe shutdown system as well as some maintenance. Instead of retrofitting the poison injection found at the other plants, the least cost option was to add more shutdown rods and then split them into separate, independent groups. This was deemed sufficient by the AECB, despite acknowledging that this does not in fact constitute a fully independent fast acting secondary safe shutdown system. [18]
Premier Mike Harris asked former federal energy Minister Jake Epp to study and make recommendations on the problems with the Pickering restart. The review panel was established in May 2003.
Unit 4 was refitted and then restarted in Sept. 2003. The election of the Ontario Liberal Party in October 2003 delayed action on the Epp report. In late 2003, the new government fired the top three executives of OPG for botching the Unit 4 restoration, which was years late and millions of dollars over budget. [19]
Mr. Epp and the Pickering A Review Panel released their report in December 2003, [20] which acknowledged the large cost over-runs and delays, attributing blame to bad management. The Epp Review estimated the cost of restarting the remaining three reactors at $3 – 4 billion and supported the continuation of the project.
The government of Dalton McGuinty appointed Epp to the Ontario Power Generation Review headed by John Manley to examine the future role of Ontario Power Generation (OPG) in the province's electricity market, examine its corporate and management structure, and decide whether the public utility should proceed with refurbishing three more nuclear reactors at the Pickering nuclear power plant. The report recommended proceeding with the restart of Pickering “A” reactors 1, 2, and 3, sequentially. The report argued that the restart of units 2 and 3 would be contingent on whether “OPG will be able to succeed at the Unit 1 project." [21]
The McGuinty government accepted the OPG Review Committee's recommendation and allowed the refit and restart of reactor 1.
The anti-nuclear group Sierra Club of Canada criticized the 2004 OPG Review Committee report for not attributing any blame to the problems of nuclear technology, noting that there were no energy or environmental experts appointed to the panel. [22]
Numerous changes in executive-level staff and project management strategy were made for the follow-on project to refit Unit 1. The experience with the return to service of Pickering A Unit 1 was significantly different from Unit 4, with a much tighter adherence to schedule and budget. [23] In August 2005, the OPG Board of Directors announced that Units 2 and 3 would not be returned to service due to specific technical and cost risks surrounding the material condition of these two units. Unit 1 was returned to service in November 2005. [24]
The graph represents the annual electricity generation at the site (A and B combined) in GWh.
As of the end of 2023, the total lifetime output of the facility was 972,252 GWh.
Ontario Hydro estimated the construction cost for the four Pickering "A" units at $508 million in 1965. Actual cost was $716 million (in 1973 dollars). [25] Adjusted for inflation, the $508 million estimate in 1973 dollars is $698 million, a 2.6% overrun.
The 1974 estimated cost for the four Pickering "B" units was $1.585 billion. Final cost was $3.846 billion (1986 dollars). [26] Adjusted for inflation, the $1.585 billion estimate in 1986 dollars is $4.082 billion, putting Pickering B under budget.
According to Ontario's FAO, the cost for refitting and restarting the Pickering A units deviated significantly from projections. [27]
- Pickering Unit 4 was slated to cost $460 million and ultimately ended up costing $1.25 billion.
- Pickering Unit 1 was slated to cost $210 million and ultimately ended up costing $1.00 billion.
However, the figure presented by the FAO for Unit 1 doesn't align with that provided by Ontario Energy Minister, Dwight Duncan, who indicated that Pickering Unit 1 would cost $900 million, putting the completed project much closer to budget. [28] This is supported by OPG stating that the project was completed on time and on budget. [23]
The used nuclear fuel and some refurbishment waste generated by the plant sits on-site at the Pickering Waste Management Facility. All operational low and intermediate-level waste is transported to OPG's Western Waste Management Facility at the Bruce nuclear site near Kincardine, Ontario. OPG has proposed the construction and operation of a deep geologic repository for the long-term storage of low and intermediate level waste on lands adjacent to the Western Waste Management Facility. [29] The Nuclear Waste Management Organization is currently seeking a site for a potential repository for the used fuel from all Canadian nuclear reactors.
On October 7, 1994, Pickering Unit 7 set the world record for continuous runtime at 894 days, a record that stood for 22 years. It was surpassed by Heysham 2 unit 8 in 2016, a facility located in the UK, owned by EDF. [30] This was subsequently surpassed by OPG's Darlington plant with Unit 1 running 1,106 consecutive days. [31]
- In 2019, Pickering set a site capacity factor record of 87.07%, producing 23.6TWh and putting it roughly on-par with the much newer Darlington and Bruce facilities. [2]
In January 2016, the Province of Ontario approved plans to pursue continued operation of the Pickering Nuclear Generating Station to 2024. [32] The extension was intended to ensure sufficient base load electricity was available during refurbishment of the Darlington Nuclear Generating Station and the initial Bruce Nuclear refurbishments. [33] By 2016, OPG had begun planning for the end of commercial operations at the generating station, including the potential repurposing of the Pickering site location. [34]
OPG will begin the longer term decommissioning process if refurbishment is not pursued. The first step in the long-term decommissioning process is to layup the reactors and place them into safe storage. Pickering staff will have future employment opportunities placing the Pickering units in a safe storage state, at the Darlington refurbishment and operations, or at the potential new build at Darlington.
In September 2022, the Province of Ontario announced that it supported an extension of Pickering's operation from 2024 to 2026. Simultaneously, it announced that it had requested OPG to update feasibility studies on the potential refurbishment of the four units of Pickering B. In its announcement, the Province stated that continued operation of the station would reduce carbon dioxide emissions by 2.1 megatonnes in 2026, as well as increasing the North American supply of cobalt-60, a medical isotope. [35] [36]
In August 2023, the OPG Board of Directors agreed with and authorized the submission of the feasibility assessment for the refurbishment of the Pickering B plant to the province as well as to proceed with preliminary planning and preparation activities for the project. [37] This feasibility report was given to the Minister of Energy in January 2024 but was not released to the public because it could harm the "economic or other interests of Ontario.” [38]
On January 30, 2024, the Minister of Energy, Todd Smith, announced that the Government of Ontario would be investing in the refurbishment of the four Pickering B reactors that date back to the early 1980s. [39] The refurbishment is expected to be complete by the mid 2030s and should extend the life of the plant by at least another 30 years. [40]
On October 1st, 2024 at 11PM, Pickering 1 was removed from service as planned, as part of the A plant shutdown process. [41]
A serious incident occurred on 1 August 1983. Pressure tube G16 in the Pickering A Unit 2 reactor developed a 2 metre long split. The reactor was safely shut down and the damage investigated. The cause was found to be the mis-location of annulus gas spacer springs which allowed the hot pressure tube to sag and touch the inside of the cold calandria tube leading to hydrogen enrichment of the cooler areas. This created a series of small cracks which linked up and caused the long rupture. There was some local fuel damage and the reactor was safely shut down by the operators with no increase in radioactive emissions. The eventual resolution was Large Scale Fuel Channel Replacement and all the pressure tubes were replaced in all Pickering A reactors. The new pressure tubes were supported by an improved design of the annulus gas spacer springs. Since then, careful monitoring of the location of the annulus gas spacer rings has been a significant part of routine reactor inspections. [42]
On December 10, 1994 there was a loss of coolant accident. It is said to be the most serious accident in Canadian history (June 2001) by The Standing Senate Committee on Energy, the Environment and Natural Resources. The Emergency Core Cooling System was used to prevent a meltdown. [43] [44]
In 1995 and 1996, the AECB noted many safety concerns with the plant, and the generating station was shut in 1997 after peer reviews describing poor safety practices at the plant became public. An Independent, Integrated Performance Assessment report noted that Pickering stations A and B were cited for breaking regulation 15 times and having 13 fires for the year. "Also of concern was the high failure rate of persons being tested for positions as nuclear operators. At Pickering A only 65% of those taking the test passed, while at Pickering B the rate was just 56%." [45]
On March 14, 2011, there was a leak of 73 cubic metres of demineralized water into Lake Ontario from a failed pump seal. There was negligible risk to the public according to the Canadian Nuclear Safety Commission. [46]
On January 12, 2020 at 7:24 a.m. ET, an emergency alert was issued via Alert Ready on all radio stations, television stations, television providers, and wireless networks in the province of Ontario, containing an advisory of an unspecified "incident" that had been reported and was being addressed at the plant. The alert stated that no immediate action was required for those within 10 kilometres (6.2 mi) of the plant. Approximately 40 minutes later, OPG issued a statement via Twitter that the alert had been sent in error, and a second emergency alert was issued at around 9:10 a.m. with a similar message cancelling the previous alert. [47] [48]
Solicitor General Sylvia Jones stated that the alert was accidentally issued during a "routine training exercise" by Ontario's emergency operations centre. The incident prompted criticism from government officials, including MPP Peter Tabuns, Pickering mayor Dave Ryan, and Toronto mayor John Tory. [49]
The false alarm also prompted renewed interest in preparedness for actual nuclear accidents: OPG reported a surge in the sales of potassium iodide kits via its "Prepare to Be Safe" website between January 12 and 13, increasing from its monthly average of 100 to 200, to over 32,000. The website is applicable for those who live within 50 kilometres (31 mi) of the plant; per Canadian Nuclear Safety Commission (CNSC) requirements, OPG is required to distribute these pills to all residences within 10 kilometres (6.2 mi) of a nuclear facility. [50] [51] [52]
The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.
Ontario Hydro, established in 1906 as the Hydro-Electric Power Commission of Ontario, was a publicly owned electricity utility in the Province of Ontario. It was formed to build transmission lines to supply municipal utilities with electricity generated by private companies already operating at Niagara Falls, and soon developed its own generation resources by buying private generation stations and becoming a major designer and builder of new stations. As most of the readily developed hydroelectric sites became exploited, the corporation expanded into building coal-fired generation and then nuclear-powered facilities. Renamed as "Ontario Hydro" in 1974, by the 1990s it had become one of the largest, fully integrated electricity corporations in North America.
Arthur Jacob "Jake" Epp, is a Canadian executive and former politician.
Atomic Energy of Canada Limited (AECL) is a Canadian Crown corporation and the largest nuclear science and technology laboratory in Canada. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy.
Bruce Nuclear Generating Station is a nuclear power station located on the eastern shore of Lake Huron in Ontario, Canada. It occupies 932 ha of land. The facility derives its name from Bruce Township, the local municipality when the plant was constructed, now Kincardine due to amalgamation. With eight CANDU pressurized heavy-water reactors, it was the world's largest fully operational nuclear generating station by total reactor count and the number of currently operational reactors until 2016, when it was exceeded in nameplate capacity by South Korea's Kori Nuclear Power Plant. The station is the largest employer in Bruce County, with over 4000 workers.
Darlington Nuclear Generating Station is a Canadian nuclear power station located on the north shore of Lake Ontario in Clarington, Ontario. It is a large nuclear facility comprising four CANDU nuclear reactors with a total output of 3,512 MWe when all units are online, providing about 20 percent of Ontario's electricity needs, enough to serve a city of two million people. The reactor design is significantly more powerful than those used in previous CANDU sites at Pickering and Bruce, making its 4-unit plant the second-largest in Canada behind the 8-unit Bruce. It is named for the Township of Darlington, the name of the municipality in which it is located, which is now part of the amalgamated Municipality of Clarington.
Point Lepreau Nuclear Generating Station is a nuclear power station located 2 km northeast of Point Lepreau, New Brunswick, Canada. The facility was constructed between 1975 and 1983 by NB Power, the provincially owned public utility.
The OPG 7 Gomberg Turbine was a Vestas model V80-1.8MW wind turbine in Pickering, Ontario. At the time of its construction, it was one of the largest wind turbines in North America, a 117-metre high wind machine commissioned in 2001 and designed to produce enough power to satisfy about 600 average households. This electricity was also emission-free.
Nine Mile Point Nuclear Station is a nuclear power plant with two nuclear reactors located in the town of Scriba, approximately five miles northeast of Oswego, New York, on the shore of Lake Ontario. The 900-acre (360 ha) site is also occupied by the James A. FitzPatrick Nuclear Power Plant.
Nuclear power in Canada is provided by 19 commercial reactors with a net capacity of 13.5 gigawatt (GW), producing a total of 95.6 terawatt-hours (TWh) of electricity, which accounted for 16.6% of the country's total electric energy generation in 2015. All but one of these reactors are located in Ontario, where they produced 61% of the province's electricity in 2019. Seven smaller reactors are used for research and to produce radiopharmaceuticals for use in nuclear medicine.
Bruce Power Limited Partnership is a Canadian business partnership composed of several corporations. It exists as a partnership between TC Energy (31.6%), BPC Generation Infrastructure Trust (61.4%), the Power Workers Union (4%) and The Society of United Professionals (1.2%). It is the licensed operator of the Bruce Nuclear Generating Station, located on the shores of Lake Huron, roughly 250 kilometres northwest of Toronto, between the towns of Kincardine and Saugeen Shores. It is the third-largest operating nuclear plant in the world by capacity.
Heysham nuclear power station is operated by EDF Energy in Heysham, Lancashire, England. The site is divided into two separately-managed nuclear power stations, Heysham 1 and Heysham 2, both with two reactors of the advanced gas-cooled reactor (AGR) type.
The Nanticoke Generating Station was a coal-fired power station in Nanticoke, Ontario in operation from 1972 to 2013. It was the largest coal power station in North America and, at full capacity, it could provide 3,964 MW of power into the southern Ontario power grid from its base in Nanticoke, Ontario, Canada, and provided as much as 15% of Ontario's electricity.
Ontario Power Generation Inc. (OPG) is a Crown corporation and "government business enterprise" that is responsible for approximately half of the electricity generation in the province of Ontario, Canada. It is wholly owned by the government of Ontario. Sources of electricity include nuclear, hydroelectric, wind, gas and biomass. Although Ontario has an open electricity market, the provincial government, as OPG's sole shareholder, regulates the price the company receives for its electricity to be less than the market average, in an attempt to stabilize prices. Since 1 April 2008, the company's rates have been regulated by the Ontario Energy Board.
The Deep Geologic Repository Project (DGR) was a proposal by Ontario Power Generation (OPG) in 2002 for the site preparation, construction, operation, decommissioning and abandonment of a deep geological radioactive waste disposal facility for low and intermediate-level radioactive waste (L&ILW). In 2005, the municipality of Kincardine, Ontario volunteered to host the facility located on the Bruce nuclear generating station adjacent to OPG's Western Waste Management Facility (WWMF). The facility would have managed L&ILW produced from the continued operation of OPG-owned nuclear generating stations at the Bruce, Pickering Nuclear Generating Station and Darlington Nuclear Generating Station in Ontario. In May 2020, after 15 years of environmental assessment, OPG withdrew its application for a construction license on Saugeen Ojibway Nation Territory.
The Lambton Generating Station was a coal-fuelled power plant located on the St. Clair River near Corunna, Ontario, delivering up to 950 MW of power to the grid. It is owned by Ontario Power Generation.
The BWRX-300 is a design for a small modular nuclear reactor proposed by GE Hitachi Nuclear Energy (GEH). The BWRX-300 would feature passive safety, in that neither external power nor operator action would be required to maintain a safe state, even in extreme circumstances.